IZMIR KATIP CELEBI UNIVERSITY | DEPARTMENT OF BIOMEDICAL ENGINEERING MID-TERM EXAM OF BME206 ELECTRONIC CIRCUITS

April 22, 2024
Duration: 75 minutes for 4 questions.
Note: Tere is no extra paper, you should answer your questions on the given question.

Question \#1: Draw the circuit defined by the following PSPICE code:

* C:\LTspice\examples \Educational\phaseshift.asc

Q1 OUT NO04 NOO5 0 2N2222
R1 N001 OUT 10K
R2 NOO1 NOO4 100K
R3 N004 0 10K
R4 N003 0 10K
R5 NOO2 0 10K
C1 N005 0 1u
C2 NOO4 NOO3 . O1u
R6 N005 0 1K
C3 N003 N002 . 01u
C4 NOO2 OUT .01u
V1 N001 012
.model 2N2222 NPN
. lib C: \LTspice\lib\cmp\standard.bjt
.tran 1u 100m

* This is supplied for educational purposes by LTspice :)
.backanno
.end

IZMIR KATIP CELEBI UNIVERSITY | DEPARTMENT OF BIOMEDICAL ENGINEERING MID-TERM EXAM OF BME206 ELECTRONIC CIRCUITS

April 22, 2024
Duration: 75 minutes for 4 questions.
Note: Tere is no extra paper, you should answer your questions on the given question.

Question \#2: For the following BJT circuit, the transistor is a Silicon device ($\mathrm{V}_{\mathrm{BEQ}}=0.7 \mathrm{~V}$). If the $\beta=99$ and $I_{B Q}=30 \mu \mathrm{~A}$, then please calculate the value of R_{2}.

(2) By redrawing the circuit:

$$
\begin{aligned}
& -V_{B}+R_{B} \cdot I_{B Q}+V_{B E}+R_{E} \cdot I_{E Q}=0 \\
& -\frac{R_{2}}{R_{1}+R_{2}} \cdot V_{C C}+\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}} \cdot I_{B Q}+U_{B E}+R_{E} \cdot(\beta+1) \cdot I_{B Q}=0 \\
& -\frac{R_{2}}{10000+R_{2}} \cdot 15+\frac{10000 \cdot R_{2}}{10000+R_{2}} \cdot 30 \cdot 10^{-6}+0.7+1000 \cdot(9 S+1) \cdot 30 \cdot 10^{-6}=0
\end{aligned}
$$

$$
-15 \cdot \frac{R_{2}}{10000+R_{2}}+0,3 \cdot \frac{R_{2}}{10000+R_{2}}=-0,7-3
$$

$$
\begin{aligned}
&-14,7 \cdot \frac{R_{2}}{10000+R_{2}}=-3,7 \\
& \frac{R_{2}}{10000+R_{2}} \cong 0,25 \Rightarrow R_{2}=0,25 \cdot R_{2}+2500 \\
& 0,75 \cdot R_{2}=2500 \\
& R_{2}=3,3 \mathrm{~K}
\end{aligned}
$$

IZMIR KATIP CELEBI UNIVERSITY | DEPARTMENT OF BIOMEDICAL ENGINEERING MID-TERM EXAM OF BME206 ELECTRONIC CIRCUITS

April 22, 2024
Duration: 75 minutes for 4 questions.
Note: Tere is no extra paper, you should answer your questions on the given question.

Question \#3: For the following JFET circuit, if $\mathrm{Vs}=1.5 \mathrm{~V}$ then please determine the AC voltage gain formula.

(3)
A.C. equivalent circuit,

$$
\begin{aligned}
& A_{V}=\frac{V_{\text {out }}}{V_{s}} \\
& V_{G s}=V_{s} \\
& V_{\text {out }}=-\left(R_{d} / / R_{0}\right) \cdot S_{m} \cdot V_{\text {ss }} \\
& V_{\text {out }}=-\frac{R_{d} \cdot R_{0}}{R_{d+}} \cdot R_{m} \cdot V_{s} \\
& \frac{V_{\text {out }}}{V_{s}}=A_{s}=-\frac{2000 \cdot 2000}{2000+2000} \cdot 2 \cdot 10^{-3}=-2
\end{aligned}
$$

IZMIR KATIP CELEBI UNIVERSITY | DEPARTMENT OF BIOMEDICAL ENGINEERING

MID-TERM EXAM OF BME206 ELECTRONIC CIRCUITS
April 22, 2024
Duration: 75 minutes for 4 questions.
Note: Tere is no extra paper, you should answer your questions on the given question.

Question \#4: For the following circuit, please determine the voltage of the out node if the in node is 3 V sine.

(4)

$$
\begin{aligned}
& V_{G E}=0,3 \cup \\
& V_{S i}=0,7 V \\
& \text { if } V_{\text {in }}>V_{G e}, V_{\text {out }}=V_{G e},(G e: O N) \\
& \text { if } V_{\text {in }}<-V_{S i}, V_{\text {out }}=-V_{S i},(\text { si:ON }) \\
& \text { otherwise, } V_{\text {out }}=V_{\text {in }}, \text { (both Ge and Si:off) }
\end{aligned}
$$

