

## Simple Circuit Theory Terminology (1)

- Any electronic device will have one or more connection points, called "leads" (lead 1 and lead 2, for example).
- Device leads are connected together to form a circuit.
- If a circuit
- is completely-connected with conductors and devices, this circuit (part) is called "close circuit",
- is not completely-connected with conductors and devices, this circuit (part) is called "open circuit",
- has a shorter path to complete the circuit with conductors, this circuit (part) becomes "short circuit" since electricity likes to flow through the easist path.
- Voltages are always measured as a voltage difference between two points in a circuit.
- Currents are always measured after breaking the circuit from a specific point.



## Simple Circuit Theory Terminology (2)

- Ground (GND) is the reference point that indicates where $\mathrm{V}=0$.
- If there is no reference point given on the circuit, you must determine one.
- Common indicates the connected leads instead drawing conductors directly.


Ground


Common

## Simple Circuit Theory Terminology (3)

- If current comes into lead +, this device consumes the power.
- If current leaves from lead +, this device supplies (delivers) the power to the circuit.



## Series Connection

- Only one of leads (terminals) of two-lead devices are connected.
- Currents of all devices are same:
- $I=I_{R 1}=I_{R 2}=I_{R 3}=I_{R 4}=I_{R 5}=I_{R 6}$
- Voltage of the final terminals are sum of all voltages (i.e. total voltage are shared):
- $V=V_{R 1}+V_{R 2}+V_{R 3}+V_{R 4}+V_{R 5}+V_{R 6}$
- $V=I *\left(R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}\right)$
- $R=R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}$



## Voltage Divider

- General rule:

■ $I=\frac{V_{O}}{R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}}$

- $V_{A B}=I *\left(R_{3}+R_{4}\right)$

- $\quad V_{A B}=\frac{V_{O}}{R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}} *\left(R_{3}+R_{4}\right)$
- $\quad V_{A B}=\frac{R_{3}+R_{4}}{R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}} * V_{O}$
- Example:
- $\quad V_{1}=\frac{3300}{1200+3300+4700} * 5$
- $V_{1}=1.8 \mathrm{~V}$



## Parallel Connection

- Both leads (terminals) of two-lead devices are connected.
- Voltages of all devices are same:
- $V=V_{R 1}=V_{R 2}=V_{R 3}$
- Current of the final terminals are sum of all branch currents (i.e. total current are shared):

- $I=I_{R 1}+I_{R 2}+I_{R 3}$
- $\frac{V}{R}=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}$
- $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$


## Effective (or Equivalent) Resistor

- Using series and parallel connection properties in order, we can find the equivalent resistor.



## Kirchoff's Laws

- Kirchhoff's Current Law (KCL): The sum of the currents entering any point in a circuit equals the sum of the currents leaving that point.
- $I a=I b+I c$
- $-I a+I b+I c=0$
- Kirchhoff's Voltage Law (KVL): The sum of the changes in the voltage, dVi , around any closed path is zero. (A closed path is one that ends at the same position where it starts.)
- From left-bottom corner, follow the clock-wise direction:

- $-V_{o}+I_{a} * R_{1}+I_{b} * R_{3}+I_{a} * R_{5}=0$
- $-V_{o}+I_{a} * R_{1}+\left(I_{a}-I_{c}\right) * R_{3}+I_{a} * R_{5}=0$


## Mesh Analysis

- Mesh: Closed circuit path.
- For all mesh currents, applying KVL is called Mesh Analysis.
$\begin{array}{ll}\text { - }-V_{o}+I_{p} * R_{1}+\left(I_{p}-I_{q}\right) * R_{3}+I_{q} * R_{5}=0 & \text { (equation \#1) } \\ \text { - }\left(I_{q}-I_{p}\right) * R_{3}+I_{q} * R_{2}+I_{q} * R_{4}=0 & \text { (equation \#2) }\end{array}$

- After finding the mesh currents, determine other electrical quantities:
- $I_{R 1}=I_{R 5}=I_{p}$
$V_{R 1}=I_{R 1} * R_{1}$
$V_{R 5}=I_{R 5} * R_{5}$
- $I_{R 3}=I_{p}-I_{q}$
$V_{R 3}=I_{R 3} * R_{3}$
- $I_{R 2}=I_{R 4}=I_{q}$
$V_{R 2}=I_{R 2} * R_{2}$
$V_{R 4}=I_{R 4} * R_{4}$



## Nodal Analysis

- Node: Junction where 3 or more devices connected together.
- One of the node is selected as reference point (GND). For other nodes, applying KCL is called Nodal Analysis.
- $\frac{V_{a}-V_{o}-G N D}{R_{1}+R_{5}}+\frac{V_{a}-G N D}{R_{3}}+\frac{V_{a}-G N D}{R_{1}+R_{5}}=0$
- $\frac{V_{a}-V_{o}}{R_{1}+R_{5}}+\frac{V_{a}}{R_{3}}+\frac{V_{a}}{R_{1}+R_{5}}=0 \quad$ (simplified with GND $=0$ )
- After finding the node voltages, determine other electrical quantities:
- $I_{R 1}=I_{R 5}=\frac{V_{a}-V_{o}}{R_{1}+R_{5}}$

$$
V_{R 1}=I_{R 1} * R_{1} \quad V_{R 5}=I_{R 5} * R_{5}
$$

- $\quad I_{R 3}=\frac{V_{a}}{R_{3}}$
$V_{R 3}=I_{R 3} * R_{3}$
- $I_{R 2}=I_{R 4}=\frac{V_{a}}{R_{2}+R_{4}}$
$V_{R 2}=I_{R 2} * R_{2}$
$V_{R 4}=I_{R 4} * R_{4}$



## Superposition Principle

- For any linear circuit containing more than one independent source, the circuit can be solved by considering one source at a time, with all the other source(s) "turned off (or killed)," and then adding those results together.
- A voltage source that is "turned off" is a voltage source fixed at 0 V -such a source is equivalent to a wire (shortcircuit).
- A current source that is "turned off" is a current source fixed at 0 A -such a source is equivalent to an open circuit (no connection).
- $I_{1 k}=I_{1}-I_{2}$



## LTS: Left To Students (Not homework, try yourself)


(a) Power consumed by 2 K resistor?
(b) Power supplied by 3 V source?

## LTS: Left To Students (Not homework, try yourself)


$v_{2}(t)=$ ?
(a) using Mesh Analysis,
(b) using Nodal Analysis,
(c) using Superposition + any method.


