Gate-Level Minimization

BME208 — Logic Circuits
Yalcin ISLER
islerya@yahoo.com
http://me.islerya.com

mailto:islerya@yahoo.com
http://me.islerya.com/

Complexity of Digital Circuits

* Directly related to the complexity of the algebraic
expression we use to build the circuit.

* Truth table
— may lead to different implementations

— Question: which one to use?
* Optimization techniques of algebraic expressions

— So far, ad hoc.
— Need more systematic (algorithmic) way

* Quine-McCluskey
* Karnaugh (K-) map technique

* Espresso

Quine-McCluskey Method

* F(x1,x2,x3,x4)=%2 2,4,6,8,9,10,12,13,15

mi [x1|x2|x3 x4

2 1001 0

O | 0 b~

S

=== O = O
= O O =R O\
O = O = O 0O
© O =R O O 0O

Quine-McCluskey Method

List 1 List 2 List 3
mi |[x1|{x2|x3|x4 mi |[x1|x2|x3|x4 mi x1(x2 | x3 (x4
2 |0/0|1 Olokl 26 0| -/1(0 89,12,13|1 | - |0 | -
4 (0/1/0/0(ok| 210 |-/0|1 O 8,129,131 | - | 0| -
8 1/ 0/ 0/ 0okl 46 (0|1 -|0 Finished
6 0 1/1 0ok 412 -|/1/0|0
9 1/ 0(0(1 okl 89 [1|/0(0| - ok
10 |1 0|1 0 ok 810 (1|0 |-|0

1/1/0|0 1

Quine-McCluskey Method

List 1 List 2 List 3
mi |[x1|{x2|x3|x4 mi |[x1|x2|x3|x4 mi x1(x2 | x3 (x4
26 0/ -/1/0/t289,12,13/ 1 - 0 -
2,10 |- [0|10 t3
4.6 01| - 0 t4 Finished
412 | - |1/ 0|0 |t5
810 |1 0| - |0 t6

tl

Quine-McCluskey Method

4 6 8

9

10

12

13

15

t1

X

t2

t3

t4

t5

t6

t7

F(x1,x2,x3,x4)=t1+t7+t3+t4
=x1x3’ + xIx2x4 + x2'x3x4" + x1’x2x4’

tS5isa
subset of
t4

10
t2
t3 X
t4
t5
t6 X

téis a
subset of
t3

Two-Variable K-Map

 Two variables: x and y

— 4 minterms:
*m,=xy =200
*m; =Xy - 01
°*m,=xy’ - 10
* M, =Xy -2 11

nyample: Two-Variable K-Map

X 0 1
0 1 1

1 1 0

—F=my+m;+m,=x"y +xy+xy’

_ F — X) ¥ y)
* We can do the same optimization by combining
adjacent cells.

Three-Variable K-Map

YZ
X 00 01 11 10
Ol mg m;, ms m,
1 my ms m-, m,

* Adjacent squares: they differ by only one
variable, which is primed in one square and not
primed in the other

Example: Three-Variable K-Map

* F,xv,2)=2(23,4,5)

yz
% 00 01 11 10
0 0 0 1 1
1 1 1 0 0
Fi(x.y,2)=
Fu(x,y,2z)=2(3,4,6,7)
yz
X 00 01 11 10
0 0 0 1 0
1 1 0 1 1

Example: Three-Variable K-Map

* F,xv,2)=2(23,4,5)

yz
% 00 01 11 10
0 0 0 1 1
1 1 1 0 0
Fi(x,y, z)= Xy' + X'y
Fo(x,y,2)=2.(3,4,6,7)
yz
X 00 01 11 10
0l_ O 0 1 o [
[5[o [a]|

L Fix,y,2)= XZ +YZ

Three Variable Karnaugh Maps

One square represents one minterm with
three literals

Two adjacent squares represent a term with
two literals

Four adjacent squares represent a term with
one literal

Eight adjacent squares produce a function
that is always equal to 1.

Example

F]_(XI yl Z) = 2 (OI 2; 41 51 6)

N o0 1

0 1 0 0

X { 1 1 1 0
- N

Fi(x,y, 2) =

* F]_(XI yl Z) = Z (OI 2; 41 51 6)

YZ

‘1

Fi(x,y, 2) =

14

Example

00 01 11 10
0\1l 0 0 I1/
17_;‘) : I 0

Finding Sum of Minterms
* |f a function is not expressed in sum of minterms

form, it is possible to get it using K-maps

— Example: F(x,y, z) =xz+ X'y + xy'z + yz

YZ

F(x,y, z) = Xy'z+ Xyz+ Xyz + xXy'z + xyz
F(x,y, z)=

Four-Variable K-Map

* Fourvariables: x,vy, z, t
— 4 literals
— 16 minterms

zt A
xy\. 00 01 11 10
00l mg | m; | mg | m,
Ol my | Mg | My | mg } y

X 11 mp | M3 | M5 | My
10/ mg | mg | My | My

Example: Four-Variable K-Map

—F(x,y,zt)=2(0,1,2,4,5,6,8,9, 12, 13, 14)

y4]
Xy 00 01 11 10

00
01

11
10

_= | = = -
_= | = = =
o] O] ©O| O

O| mr| m| -

F(x,y,zt) =

Example: Four-Variable K-Map

—F(x,y,zt)=2(0,1,2,4,5,6,8,9, 12, 13, 14)

¢

00 01 11 10
] 1 0
%. P
T 1 || o [FT |
/11’;71/ 1 0] 1\\
/1‘0" 1 1 o) O\\

- F(xy.zt)=

18

Example: Four-Variable K-Map

° F(X,y,Z,t) — X;yrzi + ylzt) n Xryzt) + Xy;Z;

y4]
Xy 00 01 11 10

00| 1 1 o) 1
o1f O 0 0 1
11| O 0 o) 0
10| 1 1 0 1

- F(x,y,z,t) =

Example: Four-Variable K-Map

° F(X,y,Z,t) — X;yrz) + yizt; n Xryzt) + Xyrzi

zt
Xy \ool o1 [11 |10

00| \1 1/ o 1

ofl O 0 0 1~

Ml 0 0 0 o |
0

~
g/

Example: Four-Variable K-Map

y4]
Xy 00 01 11 10

00
01
11
10

- F(xy,zt) =

Prime Implicants

* A product term

— obtained by combining maximum possible number of
adjacent squares in the map

* |f a minterm is covered by only one prime implicant,
that prime implicant is said to be essential.

— Asingle 1 on the map represents a prime implicant if it is
not adjacent to any other 1's.

— Two adjacent 1’s form a prime implicant, provided that
they are not within a group of four adjacent 1’s.

— So on

Example: Prime Implicants
* F(x,y,2,t)=2(0, 2,3,5,7,8,9, 10, 11, 13, 15)

zt
xy\. 00 01 11 |10

oo /] o [[T]\4

off o | (T [[1)]| o T~

0 [t [[U] of

o T\ 1 [[1 [/
|

o
* Prime implicants

* y't' - essential since my is covered only in it
-yt - essential since mg is covered only in it
- They together cover my, m,, mg, Mm;y, Mg, M-, M3, M5

23

Example: Prime Implicants
zt
xy_ 00| 01 11 |10

oo 1] 0| 1 |\l
or7o/ T 1| o
ML 0 11 1) | ot
0 1\| 1 | 1 /1/
\ |

* mj, My, My, are not yet covered.

* How do we cover them?
* There are actually more than one way.

24

. Example: Prlmelmpllcants

xy_ 00 01 \ 11, 10/
00 o |\

o1 O 0

1 o0 | [0

10 Lij\
/ ©\

Both y’z and zt covers m; and my;.

my can be covered in two different prime implicants:

— xt or xy’

)
m;, my; 2 ztory’z
)
my = Xy’ or xt

25

Example: Prime Implicants
S(%,y, 2, t) =yt +y't’ +zt + xt or

F(x, Y, 2, t) =yt +y't’ + zt + xy’ or
F(x,y,z,t) =yt+y't'+y'z+xtor

F(X, Y, 2, t) =yt +y't' +y'z+xy’
Therefore, what to do

— Find out all the essential prime implicants

— Other prime implicants that covers the minterms not
covered by the essential prime implicants

— Simplified expression is the logical sum of the
essential implicants plus the other implicants

Five-Variable Map

* Downside:

— Karnaugh maps with more than four variables are not
simple to use anymore.

— 5 variables = 32 squares, 6 variables = 64 squares
— Somewhat more practical way for F(x, v, z, t, w)

Tw Tw
yz\O 00 01 11 10 yz_ 00 01 11 10
Olmg | m | mg | mp | 00 my | my | My | Mg
Ol my | ms | my | Mg 011 myg | Myy | Mp3 | My,
imp | Mz | Mg | My 11| mag | Mg | M3y | M3
10 mg | mg | My | My 10] may | Mas | My7 | My

. Adjacencylylany-VarlabIe Maps

— Each square in the x = 0 map is adjacent to the
corresponding square in the x = 1 map.
— For example, m; = m,,and m;. = my,
e Use four 4-variable maps to obtain 64 squares
required for six variable optimization
* Alternative way: Use computer programs
— Quine-McCluskey method
— Espresso method

Example: Five-Variable Map
e F(x,y,z,t,w)=21(0, 2,4,6,9, 13, 21, 23, 25, 29,
31)

tw tw
yz\. 00 01 11 10 __yz\ 00 01 11 10
00| 1 1 00

1 1 g

01| 1 1 N 0 1 1)

1T] 1 11 1 1

10 1 10 1

x=0 x=1

- F(xy,ztw)=

31

Product of Sums Simplification

e So far

— simplified expressions from Karnaugh maps are in sum of
products form.

e Simplified product of sums can also be derived from
Karnaugh maps.

e Method:

— A square with 1 actually represents a “minterm”

— Similarly an empty square (a square with 0) represents a
“maxterm”.

— Treat the O’s in the same manner as we treat 1’s

— The result is a simplified expression in product of sums
form.

Example: Product of Sums
* F(x,y,z,t)=2(0,1, 2,5, 8,9, 10)
— Simplify this function in
a. sum of products

b. product of sums
zt

xy\\ 00] o1/ 11 |10

|
.SV B
1 -
o/ NT T\ /1
/T]

F(x,y, z, t)=

33

Example: Product of Sums
e Fi(xy,zt)=

 Apply DeMorgan’s theorem (use dual theorem)
° F =

zt
Xy 00 01

00| 1

S

1
01 \o| 1
1;J£| 0
1 1 1

F(xy,zt) =yt +yz + xXz't
. F(xy,z,t) = (y+1)(z+1)(x'+y')

10
1
If/
0]
B

OOOO]:

Example: Product of Sums

»
» >
»

F(xy,zt)= yT +y'z + X'zt sum of products implementation

Y
1.
Y
4
X
z

N << X =+ <,

>
> L .
.

F=(y +1)(X +y)(z + t'): product of sums implementation

35

Product of Maxterms
* |f the function is originally expressed in the

product of maxterms canonical form, the
procedure is also valid

* Example:
—F(x,y,z)=11(0, 2,5, 7)

yz
X 00 01 11 10

0

1

F(x.y, z)=

F(x,y,z)=xz+xZ

Product of Sums
 To enter a function F, expressed in product of sums,
in the map
1. take its complement, F’
2. Find the squares corresponding to the termsin F,
3. Fill these square with 0’s and others with 1’s.

* Example:
— F(x,y,z,t)=(x"+y +2')(y + t)
— Fx vy zt)= Jt
xy\. 00 01 11 10
00| O 0
01
11 0] 0
101 O 0

Don’t Care Conditions 1/2

e Some functions are not defined for certain
input combinations

— Such function are referred as incompletely
specified functions

— For instance, a circuit defined by the function has
never certain input values;

— therefore, the corresponding output values do not
have to be defined

— This may significantly reduces the circuit
complexity

Don’t Care Conditions 2/2

 Example: A circuit that takes the 10’s
complement of decimal digits

Unspecified Minterms

For unspecified minterms, we do not care what
the value the function produces.

Unspecified minterms of a function are called
don’t care conditions.

We use “X” symbol to represent them in
Karnaugh map.

Useful for further simplification

The symbol X’s in the map can be taken O or 1 to
make the Boolean expression even more
simplified

Example: Don’t Care Conditions

* F(x,v, 2z t)=2(1, 3,7, 11, 15) — function
e d(x,y,z t)=2(0, 2,5) —don’t care conditions

F,= or

41

Example: Don’t Care Conditions
* F,=zt+x'y' =2%(0,1, 2,3,7,11, 15)

* F,=zt+x't=2(1, 3,5, 7,11, 15)

 The two functions are algebraically unequal

— As far as the function F is concerned both functions
are acceptable

* Look at the simplified product of sums expression

for the same function F.
zt

xy\. 00 01 11 10
ol[x]| 1] 1 [[x]] F-=
otf|ofl x| 1 ||loO -
imijfo|| o)f 1 ||oO)
. 1w0(lloll o) 1 |lo

al
)
|
@)
) S| O ||
O
..Ma ||| =
|
X Zglw|lo|lo|-
Q@
|m S|—|o|lo|o
(qe]
T ~{ 8 3 = S8
X
O
)
N
=B
W - == O = O O «=
r_01_01_010
Q
h-
t © O = = O O «=
@
n“0000111
A-

=ile) @)
— | - -
— | 4 +
3|+ |-
o
S| +
N i
Ay o
X

1111111

zt

Another Way to Handle K-Maps - SOP
Xy

m0111
5|=Jo|°l-
o
S —|lo|lo|o
8 38 = ¢
I == O = O O «
O = O = O = O
-l - O O w
O O O O w w«w «
o O O O O o o

IEN N N N
0
0

10
0
0

11
+
1.l

00 ,
0 T‘/‘r
1 (1-

zt

Another Way to Handle K-Maps - SOP
Xy

m0111
5|=Jo|°l-
o
S —|lo|lo|o
8 38 = ¢
I == O = O O «
O = O = O = O
-l - O O w
O O O O w w«w «
o O O O O o o

IEN N N N
0
0

10
0
0

11
+
1.l

00 ,
0 T‘/T
1 (1-

11 | 10

al

o,

@

n

Q.

L)

|

D e
|m S|—|o|o|o
a -
T "{ 8 3 = &
® X

)

>

=

r ©O =wH O =« O = O
Q

h_

wfd © O W «=H O o -
o
nn00001_1_1_
N

10
0
0

11
+
Tl

00 ,
0 T‘/T
1 (T

(al
@)
) :
Q.

— —
..Ma HUJOO\I
|
< ml\oofl
[SJ—
|m Sl—|o|lo|o
a |
T ~{ 8 3 = S8

)¢
@)
)
>
=z
r_01_01_01_0
Q
h_
t ©O O = =-w O O =«
@)
n“0000111
N -

10
0
0

11
+
Tl

f 00
0 t 41

Another Way to Handle K-Maps - SOP

We have 1’s in the boxes
1 =x+x"=1+x=1+x" Use this wherever useful

If you partition 1 = x+x” then include x in one
term, X’ in another

If you use 1 = 1+x, then include x in a

neighboring bigger block, and process 1 as
usual

e

Q.

nvu w0111

Q.

(q0] (|

M 9| OO+

|

X glwlolo])-

Q

|m S|—|o|lo|o

(g

T {83 = 2
X

o)

)

N

=B

W - o O +«H o o -

H_0101010

h_

t O O = = O O «

@)

M“OOOOlll

10

11
+
1-

01
1.
1

00
1
.‘.

1111111

1

0

0

Another Way to Handle K-Maps - POS

IEN N N N
0

0

01 11 10

00

S|+ |-
o
S| +
N i
V:O
X

1111111

1

0

0

Another Way to Handle K-Maps - POS

IEN N N N
0

0

01 11 10

00

3|+ |~
o
S| +
N i
V:O
X

1111111

Another Way to Handle K-Maps - POS

We have O’s in the boxes
O0=x.X"=0.x=0.x" Use this wherever useful

If you partition 0 = x.x’ then include x in one
term, X’ in another

If you use 0 = 0.x, then include x in a

neighboring bigger block, and process 0 as
usual

Simultaneous Minimization of Multiple
Boolean Functions

YZ

0000|111]110]000O0
10111011110 |110

Simultaneous Minimization of Multiple
Boolean Functions

vz X'Z

olooofft1]t|[11o0]|000
1011101110110

54

Simultaneous Minimization of Multiple
Boolean Functions

vz X'Z
X 00 1 11 10
010 00||1 1] 0000

L 11
11011 1o1(ﬂ]o@o

XY

55

Simultaneous Minimization of Multiple
Boolean Functions

vz X'Z
X 00 1 11 10
0000 11]1 0000

11
11011 \10\1 mo@o

Yz Xy

56

Simultaneous Minimization of Multiple
Boolean Functions

vz X'Z
X 00 1 11 10
0000 11]1 0000

11
11 0/1 1 \10\1 mo@o

Yz Xy

57

NAND and NOR Gates

* NAND and NOR gates are easier to fabricate
Voo 4

_O| |: _Ol |:| > C=(AB)

CMOS 2-input AND gates requires

B I 6 CMOS transistors
!
CMOS 3-input NAND gates requires

— 6 CMOS transistors

Design with NAND or NOR Gates

* Itis beneficial to derive conversion rules from
Boolean functions given in terms of AND, OR, an
NOT gates into equivalent NAND or NOR
implementations

X

= -

X

59

:'} (x x) = x' > NOT
j@ [(xyY T=xy> AND

j& X'y)=x+y=>OR

»
»

New Notation

X X Xty + 7
y (xyz) y Y
y4 y4

AND-invert Invert-OR

* Implementing a Boolean function with NAND gates is
easy if it is in sum of products form.

 Example: F(x,y, z, t) = xy + zt

X X
Y Y
A A
t t

F(x,y,z, 1) = xy + zt F(x,y, z, 1) = ((xy)) + ((zt))

60

The Conversion Method

X
Y

< X

Z
.l.

((xy)) + ((z1)) =Xy + zt = [(xy) (zt) I’

 Example: F(x,vy, z) = 2(1, 3,4,5,7)

yz F=2z+xy
X o0 01 1 10 N o
) T F=(2) + (xy))

i

61

Example: Design with NAND Gates

= =

F

F I
—» D

F=(z) +((xy)) F=z+xy

62

Summary

1.
. Draw a NAND gate for each product term

2
3.
4. A product term with single literal needs an inverter in

Simplify the function

Draw a NAND gate for the OR gate in the 2" level,

the first level. Assume single, complemented literals are
available.

Multi-Level NAND Gate Designs

e The standard form results in two-level
implementations

* Non-standard forms may raise a difficulty

 Example: F=x(zt +vy) +yZ’
— 4-level implementation

TbF

ar

N.X X <

63

Example: Multilevel NAND...

F=x(zt+y)+yz

Z
1.
64

»
»
»

w N =

Design with Multi-Level NAND Gates

Rules

Convert all AND gates to NAND gates
Convert all OR gates to NAND gates

Insert an inverter (one-input NAND gate) at
the output if the final operation is AND

Check the bubbles in the diagram. For every
bubble along a path from input to output
there must be another bubble. If not so,

a. complement the input literal

Another (Harder) Example
 Example: F = (xy’ + xy)(z + t’)

— (three-level implementation)

»
-4 2
»

»

66

Example: Multi-Level NAND Gates

F=(xy +xy)(z+*1)
} G=[(xy +xy)z +1)]

F=(xy +xy)z+*)

—+ N < X <. X

vou Jus

D

F

F=(xy +xy)(z+1)

»

Design with NOR Gates
* NOR is the dual operation of NAND.

— All rules and procedure we used in the design with
NAND gates apply here in a similar way.

— Function is implemented easily if it is in product of
sums_form.

—4)& (x +x) =x"= NOT

[(x+y) T=x+y=> OR

:)O— (X'+y')Y=x*y=> AND

Example: Design with NOR Gates
o F=(x+y) (z+t) w

S 4+ N < X

—+ N < X

F=(x+y)(z+t)w

Example: Design with NOR Gates
o F=(xy +zt) (z+1')

X'
Y
»-
=
z = x'+y'+ zZ + 1Y)z + 1
¥ :’3 =(xy' +zt) (z+ 1)

Harder Example
e Example: F =x(zt +vy) +y7Z

»

>

By

=

-
P
jo

PP

Exclusive-OR Function

* The symbol: ®

— X@y=xy +xy

— (x®@y) =xy+xy’
* Properties
X®0=x
X®1=x
X®x=0
X®x' =1
XY =X Dy=(xDPy) -XNOR
. Commutatlve & Associative

— XPy=yDx

— (xPY)DPz=xD (y D 2z)

G R W e

Exclusive-OR Function

 XOR gate is not universal

— Only a limited number of Boolean functions can be
expressed in terms of XOR gates

 XOR operation has very important application in
arithmetic and error-detection circuits.

e Odd Function
—(xPy)Dz

=(xy’ +x’y) @z

=(xy’ +x'y) 2 + (xy’ +X'y) z
=xy'z’ +xX'yz’ + (xy + X'y’) z
=xy'z’ + X'yz’ + xyz + X'y’z
=>(4,2,7,1)

Odd Function

* If an odd number of variables are equal to 1, then

the function is equal to 1.
* Therefore, multivariable XOR operation is referred as

“odd” function.

YZ
X 00 01 11 10
0 0 1 0 1 Odd function
1) 1 0] 1 0]
YZ
X 00 01 11 10
) 1 0] 1 0) Even function
110 1 0) 1

Odd & Even Functions

X
Y H X®ydz Odd function

Z

* xXPyDz) = ((xDy) Dz)

X
P weven

Z

75

Adder Circuit for Integers

* Addition of two-bit numbers
— L=X+Y
— X=(x;%p) and Y = (y; Y,)
— Z=(z,2,2,)
e Bitwise addition
1. z5=%X, Dy, (sum)
C, =Xy Y, (carry)
2. 2,=%, Py, D¢,
C =X Y1 +X G +y G
3. 2,=¢,

Adder Circuit

Zy= Xg D
2= % @y, ® ¢ 0= %0 ¥ Yo
= + +
z,= ¢, Ca=X Y1+ X1 G+ Y1 G ¢1 = X5 Yo
Y1 X4 Yo Xo
 J
®

1

v

Cq
FA

Co= Z; 21

Comparator Circuit with NAND gates

e F(X>Y)
— X=(x; %) and Y = (y; y,)
1Yo
X, Xg 00 01 11 10
00| O 0] 0] 0
01 1 0] 0] 0
11 1 1 0] 1
10| 1 1 0] 0

_ ‘ ‘ “, ¢
= F(Xy, Xo, Y, Yo) = X1¥1" + X1 XoYo" + XYo'Ya

Comparator Circuit - Schematic

o I5E Project Navigater (0.61xd) - Diline.comp_nand\comp_nandusise - [D:\silind.comp_nandhcomp.sch]
[} File Edit View Project Source Process Add Tools Window Layout Help
DEEF IS % X|wa| 2R 3| Emo R LT
Options 08 % A e . . "
[Select Options]
| RED:
When you dick on a branch: =\ e
@ Select the entire branch o |
Select the line segment 1 . . . N N N N NAND2. - e e e e ey
=
=
When you move an object: —
Keep the connections to other =
objects Bl
Bresk the connections to other =
objects A E
of
When you use the area select todl, select Y
the objects that:
@ Are enclosed by the area g .
Intersect the area Al 1
@ 3
When you use the area select todl, select: o ;
@ Objects including sttribute windows N
- &
©) Objects excuding atiribute windows il .
Attribistes windows orly 7
LY
2|
-
2l 0 [lnstance = XLAS
Type = nand3
- |input: 1 => XLXN_17
 |tnput: 1 =» XLXN_13
Input: 12 =» 0 L S
i g I I Output: O =» KLXN_4)
ssign |) Fies | 7Y Liraries| 29 optons E B e plE Design Summary (out of date) [E mp_test.y
Warnings enex
s i
Console | @) Ervors |\ warnings |[8 Find n Files Results |
[1348,1260]

jolele

1|08 - Bz

omparator Circuit - Simulation

Haunch

=] Float

=] File

|1DD ns

|
[

