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WHAT IS FILTER

o Filter is a device,either software or hardware, that is used to removal
of unwanted signal and noise and to attenuate certain signal
frequency ranges and highlight other frequency regions.

@ There are two broad classes of filter;namely analog filters for
continuous signals and digital filters,which filter discrete signals .
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FILTERS

@ Also,filters can be analyzed in 4 categories according to working
principles as low pass filter,high pass filter,band-pass,band-stop filter.

i

Low-pass High-pass

Band-pass Band-stop
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ANALOG FILTERS

Analog filters are electronic circuit built from component such as resistors,
capacitors,and inductors.

@ The main aspect in filter design is filter response,which is
characterized by its transfer function,H(s),and on Bode plots.The
transfer function is written in terms of magnitude and phase:

H(e™) = |H(")] < ¢(w) (1)

@ s=0+jw
b b ..+ bps™
H(S): O+ 15+ + mS
a+ay+ ...+ aps”

@ a; and b; are scalar coefficients
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ANALOG FILTERS

Pole-zero equation

H(s) = N(s) _ K(s—zl)(s—zz)...(s—zm) 3)
D(s) (s =p1)(s = p2)--(s = pn)

z; are the zeroes or roots of the equation
N(s) =0 (4)

pi are the poles or roots of denominator
D(s) =0 ()

The gain of the system is denoted by K
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Figure Filter characteristics and region indicating the comprise between
ideal filters and practical filter
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ANALOG FILTERS

Basic Analog Filters

@ Three basic analog electronic components used in the construction of
analog filters are resistor (R),capacitor(C),and inductor(/).

@ Using combination of (R),(C),and (/) it is possible to design simple
passive filters as well as more complex filters by combining these
component either in series or in parallel as RC,RL,LC,RLC circuits.
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ANALOG FILTERS

Basic Analog Filters

RC FILTER

The impedance of a resistor is measured in ohms where as complex
impedance of a capacitor is written as
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ANALOG FILTERS

Basic Analog Filters
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Figure Circuit diagram for RC low pass filter

Presenter:Durdu Esmeli FILTERS October 2019 10 / 66



ANALOG FLTERS

Basic Analog Filter

@ The transfer function is defined as the ratio of the output voltage Vg
to the input voltage V; with the output measured across the capacitor.

“__x 1 Q
Vi R+(X) 1+sRC
. Vo 1
Gain = [H(w)| = || = ——5=5 (9)
Vi v 1+ (wRC)
@ The phase angle of the output voltage across the capacitor as
¢ = tan”*(—wRC) (10)
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ANALOG FILTERS

Basic Analog Filter

Characteristic of low pass filter

@ Analyze the gain relationship as input signal frequency w varies.When
w is small or w approach the 0,

@ We substituting w=0 into Equation 9 gives gain unity |H(w)| =1
@ When w is large or w approach the oo,
@ we substituting w = oo into Equation 9 gives |[H(W)| =0

@ when input signal frequency is w = Ric We find gain

|H(w)| = (11)

1
V2
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ANALOG FILTERS

Basic Analog Filter

@ Taking the logig of this gives us the gain in decibels or dB as

1
H = —20/og1o—= = —3dB 12
[H(w)] = ~20log1o> (12)

@ We define the frequency at which the filter gain falls by 3 dB as the
filter cutoff frequency, w,.

Presenter:Durdu Esmeli FILTERS October 2019 13 / 66



LY ud T .l T T
0 __*,.(:Lmﬂ frequency )
-0k -3.01 dB )
8 o) Slope: ~20 dBidecade
% =30 ;
m —d.ﬂ - -
| Passband Stopband l
m ok ke - "l ol
g ¢ 1
]
g-30r 1
2
g 60 g
=
ﬂ._m L
0.001 D.01 0.1 i 10 100 1000
Angular frequency (rad's)

Figure Magnitude and phase variation over frequency range of input signal
for a RC low-pass filter.
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RL Filter

nductor can be used to design a high-pass filter circuit. The complex
impedance of an inductor is given as

ZL:SL

L is the inductance measured in Henry.Inductor impedance can be written

as Z; = jwlL.

(13)

e I .

"

Figure Circuit diagram for RL high pass.filter.
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RL Filter

Vo jWL
29 14
Vi R+ jwl (14)

Vo wl
HW)| =|—| = ——m— 15
HW)| = 11 = s (15)
@ Phase angle of output voltage taken across the inductor is then
4+ R

¢L = tan 1(M) (16)
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ANALOG FILTERS

Butterworth Filters

@ Butterworth filters are higher-order filters with the special
characteristic that as filter order increase,the filter response
approaches that of an ideal filter(Akay,1994).

@ Where the attenuation region become sharper as the filter order
increase.

o Filter order or number of L and C (N) and the cutoff frequencies (w.)
are important issues to design a Butterworth filter

General magnitude of the Butterworth filters response
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ANALOG FILTERS

Butterworth Filters
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Figure A typical frequency response of an nth order Butterworth filter.
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ANALOG FILTERS
Butterworth Filter

R
iy

Fig. 2.76 Second order low pass butterworth filter
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ANALOG FILTERS

Butterworth Filter

w,
Ap = 10l0g1o[L + (--2)*"] (18)

c

W,
As = 10/ogio[L + (- *)*"] (19)

c
Ap is the maximum passband attenuation, As the minimum stopband
attenuation,w,, the passband frequency,and ws the stopband frequency.
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ANALOG FILTERS

Chebyshev Filters

@ Chebyshev filters have steeper attenuation region than Butterworth
filters at the expense of greater rippling effect in passband region.

@ There are two type Chebyshev filters as Type-l and Type-ll Chebyshev
filters.
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ANALOG FILTERS

Chebyshev Filters
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DIGITAL FILTERS

Infinite Impulse Response Filters

In signal processing, a digital filter is a system that performs mathematical
operations on a sampled, discrete-time signal to reduce or enhance certain
aspects of that signal.

e Two classes of digital filters are Finite Impulse Response (FIR) and
Infinite Impulse Response (IIR). The term 'Impulse Response’ refers
to the appearance of the filter in the time domain. The mathematical
difference between the IIR and FIR implementation is that the IIR
filter uses some of the filter output as input.
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DIGITAL FILTERS

Direct Infinite Impulse Response Filter

x[n) yin)
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DIGITAL FILTERS

Canonical IIR Filter
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DIGITAL FILTERS
Cascade IIR Filter

¥y (n) = %:(n)

1
2
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Design of IIR Digital Filters

Impulse-Invarient Transformation

@ In this method, the impulse response of the analog filter is first
sampled equally to obtain the digital impulse response. This is
written as

hp(n) = ha(nT) (20)

@ where T is the sampling period, and hD(n) the digital response
obtained from the analog response hA(nT). Suppose that the analog
transfer function in the time domain is given as

N
ha(t) = Ape™'u(t) (21)
p=1
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Design of IIR Digital Filters

Impulse-Invarient Transformation

@ where u(t) is the unit step. This can be transformed to the Laplace
equation as

Ha(s) = A (22)

s—s
p=1 P

@ Now using Equation 20, we see that the digital response can be
similarly obtained as follows:

hp(n) = ha(nT) ZA e T u(nT) (23)
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Design of IIR Digital Filters

Impulse-Invarient Transformation

o The digital transform is written using the z-transform giving

Hole) =0 =2 (24)

—espT -1
p=1

@ Writing the z-transform of the digital transfer function as a Laplace
transform, we obtain where z = eS7, w = QT, and is the analog
frequency whereas the digital frequency. If the analog filter is
bandlimited, the digital filter function takes the form

H(z) = %HA(J'%) (25)

@ where |w| =< is the cutoff frequency. At this point we have
W
=

Ha( _,_) =0 (26)

o [#]>=3
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Design of IIR Digital Filters

Bilinear Transformation

@ Another method for deriving digital filters from analog counterparts is
the bilinear transformation. This method begins with the assumption
that the derivative of the analog signal is obtainable, that is, we have

dy(t)
SILEND 27)
sY(s) = X(s) - ;Eg - % (28)
[7 PO o)y ()
(n—1)T dt
nT
- / x(t) (30)
(n—1)T
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Design of IIR Digital Filters

Bilinear Transformation

Y(nT) =yl = )T] = 2(<aT) + 5= 1)T])  (31)
y(n) —y(n—1) = Slx(n) + x(n — 1) (3)
- Y8 - T

5= iiij (34)

@ The bilinear transformation is preferable to the previous method
because it does not suffer from anti-aliasing effects, though it
sometimes results in oscillatory behavior in the resulting digital
design. This method is frequently used to derive higher-order filters.
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DIGITAL FILTERS

Finite Impulse Response Filters(FIR)

@ In FIR filters, the output is determined using only the current and
previous input samples. The output then has the following form:

—x(n—J) (35)
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FIR FILTERS

Direct FIR Filter

/\ o hi1) hi2) FAV T XY

xin) 2

M
y(n) =" h(i)x(n—Jj) (36)
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FIR FILTERS

Cascade FIR Filter
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FIR FILTERS

Design of FIR Filters

@ There are several well-known methods for designing FIR filters such as
window, frequency sampling, minmax, and optimal design techniques.
We will review just two of these methods, namely, the window and
frequency sampling methods.
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Design of FIR Filters

The Window Method

@ Using this method, an FIR filter can be obtained by selecting a set of
infinite duration impulse response sequences.Given an ideal frequency
response H;(e/"), the corresponding impulse response h;(n) can be
estimated using the following integral:

hi(n) = ;ﬂ/ﬂ H(e™)e/"" dw (38)
Hi(e™) = Y h(nm)e™ (39)

o if n between 0 and N — 1 h(n) get h;(n) otherwise g it get 0 value.

@ h(n) can be represented by the product of the infinite impulse
response h;(n) and a window w(n)
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Design of FIR Filters

The Window Method

@ There are six popular types of window , which are listed here.
1. Rectangular. For 1 <n< N -1

win) =1
2. Bariletl

o1 l<mn< -
uiin) =

N—=1

7 = n=N=1
.

Hanming, For 0<n< & — 1, the window is defined s

1 2zn Y]
e} = = [J l.uh{ " — )

|

Thiz is alse roferred to as the raised cosine windoew becanse it is
ENImetTic,
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Design of FIR Filters

The Window Method

@ There are six popular types of window , which are listed here.

4. Hamming. For 0 <n <N —1, the window is defined as

e
win) = .64 — 046 cos ( -‘u.-'mil )

This window is also known as the raised cosine platform, which has N
NONZers terms.
5. Blackman. For 0 <n=< N — 1, the window function is written as

2w 4
w(n) = 0.42 — 0.5 cos (\—”1) +0.08 (\_”1)
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Design of FIR Filters

The Window Method

@ One advantage of the Kaiser window is increased design flexibility, the
Kaiser parameter « can be used to control the main lobe widths and
the side band ripple

f. Kaoiser. For 0<n< N — 1, the window function is written as

a1l — (n/N)?

win) = wgin)ly Tola)
0

where wg(n) is the rectangular window, « the Kaiser parameter, and
Iy a modified Bessel function of the first kind of order zero, which has

the following form:

o) = 3 [m]

m=(0}
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Design of FIR Filters

Frequency Sampling Method

@ The frequency sampling method is another popular technique for
designing FIR filters. First, the discrete Fourier transform is employed
to represent the coefficients of the frequency response. Then the
impulse response coefficients are determined via the inverse discrete
Fourier transform. The discrete Fourier representation for a frequency
response H(k) can be written as

H(k) = Hi(e™) (40)
@ where the samples have frequency W= 2 7k /N for k = 0, 1,

2,...,N-1.Then the filter coefficients are derived using the inverse
transform via

h(n) =+ > H(k)e™ 7 (41)
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Design of FIR Filters

Frequency Sampling Method

e forn=0,1,2,..,N 1. Since the FIR coefficients take real values
they can be estimated from all the complex terms in the complex
conjugate pairs, so that we have

h(n) = % (H(©O)+23 k=1"T"Re [Hw]p“iﬁ]) if NV is odd

h(n) = % (H@O)+2) k=1%"Re [H(ﬂ-]v"%'"_"]) if N is even

H(z) =) h(n)z™" (42)

n=0

@ The frequency sampling method is therefore a direct method
compared to the window technique because it avoids transformations
from the time domain to the frequency domain.
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DIGITAL FILTERS

Integer Filters

@ Integer filters are another form of digital filter that are primarily
deployed in environments requiring fast online processing. The
previous digital filters can be implemented on computer software,
however, the floating point operations performed on the real
coefficients of the transfer function limit somewhat the speed of
computation. In integer filters, these coefficients are replaced by
integers making the computations faster and more efficient by using
integer arithmetic operations. These operations require only bit
shifting operations rather than the slower floating point unit (FPU)
for computations. Such filtering is especially desirable for
high-frequency digital signals or when computers have slow
microprocessors. The major limitation of the integer filter is that it
becomes difficult to obtain sharp cutoff frequencies by using only
integer coefficients in the filter transfer function.
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Integer Filters
Design of Integer Filters

@ General form of transfer function

[1—zmp

H1G) =1 " 2cos(0) ! + =27
o Dixzmp
HA2) = T 2cos(O)1 + 22
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Integer Filters

Design of Integer Filters

@ Placement of poles

Denominator = (7 — &z — =)
Multiplying the two factors, we get

Denominator = 22 — (@ + ez + (afe D)
LIsing the wentity,
el + g1
cos(l)="—73
We arrive al

Denominator = 1 — 2eos(f)! + 2
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Integer Filters

Design of Integer Filters

@ Placement of zeros
1-z"™ (43)
1+z"™ (44)
@ Possible pole zero placement on the unit circle in the z plane for
integer filter design.

1807
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ADAPTIVE FILTERS

@ An adaptive filter is a digital filter with self-adjusting characteristics.
o It adapts automatically, to changes in its input signals.

@ A variety of Adaptive algorithms have been developed for the
operation of adaptive filters, e.g., LMS , RLS, etc. *LMS (least Mean
Square) *RLS (Recursive Least Squares)

e Contains 2 main component : 1- Digital filter(with adjustable
coefficients). 2- Adaptive Algorithm.

Presenter:Durdu Esmeli FILTERS October 2019 44 / 66



ADAPTIVE FILTERS

Xy = 8=l

#
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The LMS Algorithm

ey

+l/"_"\ (Estimated signal)
C "

=

S* = xk + ‘rﬁ
(Corrupted signal) -
e a Digital filter N
Ny
(Noise) l {Noise estimate)
I
I
[
- LMS +
algorithm

Figure Adaptive filter with coefficient determined using the least
mean squares algorithm.
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The LMS Algorithm

LMS ADVANTAGES

@ Simplicity of implementation
@ Not neglecting the noise like Zero forcing equalizer

@ Stable and robust performance against different signal conditions

LMS DISADVANTAGES

@ Slow Convergence

e Demands using of training sequence as reference
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The Recursive Least Squares (RLS) ALGORITHM

s
1@ (Esxtimatod signal)

Sy= oyt Wy
{Corrupled digral)
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—

Digital filles

[Maise elimate)
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algorithm

@ Adaptive filter with coefficients determined using the recursive least

squares algorithm.
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The Recursive Least Squares (RLS) ALGORITHM

e(n) = z,ﬂ{n. Dle()E 0 :::: Fin i) =1

weight factor

o) = afi) — w(i) = d(i) — w'"l:r:j:u(l'} = i} — Z w (e i — &)

wiie) = () Wi =10 el — M+ 17]7

win) = [, (i} |.1']I:|' L SO |.'r."_:|(|' — M+ I:l|:r

@ Define the time-dependent cost function €(n)
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The Recursive Least Squares (RLS) ALGORITHM

ufi-M=+1]

| Least square solution @(n)®(n) = p(n)
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The Recursive Least Squares (RLS) ALGORITHM

] Recursion for correlation matrix

P(n) = f’u?.‘l(n - 1}. + u(n]lu”(n}_

b f

Mesw Previous I correction I
value value

p(n) = Ap(n = 1) + u(n)d" (n)

w(n) = 0~ (n)p(n) matrix inversion & &
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The Recursive Least Squares (RLS) ALGORITHM

d Toavald 071w caleulation use the relation [Let A and B be positive
definite Mxhl matrices

A=8"1+ Dty D; Mk

C; MeM matrices

3 Martix inversion lermma: A7 = B — SO0 4+ CTRCYTICYR )
Mews, A=0(r), B'=0n-1} C=uln), D=1

Aln) = 2dle — 10+ aledw{m) Bt =7

Presenter:Durdu Esmeli FILTERS October 2019 52 / 66



The Recursive Least Squares (RLS) ALGORITHM

AR = Lyuelu (e (r-1)
143" Y e Wn- i)

o) ' =1"1gm-1"

Pln) =07 m ; M= imverse comelation matrix

AEpim—13uin)
L+A- T I prin =10

k() = . gain factar
Find=3"1Pin — 13 =4 k{mda? (n) P{n — 1), Ricot equation

Efnd = [A1P(n = 1) =37 kfnju® (n) P = L) ]uln)
= Plnluln) = ¢ (nlun)
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The Recursive Least Squares (RLS) ALGORITHM

win) = 0" wlpin)
= P{nipin) = Pin)[apin = 1) + uin)d" (2]

[A= P — 1) =2 B () 2in — D][Apin — 10+ wlndd " (n)]
Wl — 1) — klndu (ndim(n — 11 + P(n)ul:n:llll"{n}
[
kil

ir(n) = wln — 1) + kin)[d () — «¥ ()i (n — 17]
= win — 13+ kin)g {n})

pln) = din)} — u ()it (n — 1) = din) —d"(n — Vnin). previous erar
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The Recursive Least Squares (RLS) ALGORITHM

Summary of the RLS Algorithm
P(0)=6711, I: identity matrix, 4: small positive constant
w(n)=0, forn=1,2, ... compute

A lp(n-1)u(n)

1 k{n} = 1+l—1uH{n]Ptﬂ_l]u(n}

2. ¢m)=dmn)—w"(n-Dun)
3. w(n) =wln-=1)+km)e (n)

4 P(n) =X"'"P(n—1) -\~ k(n)u"(n) P(n— 1) go backto (1)
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ A very popular approach that is time-varying is the Kalman filter.

@ The Kalman filter is a recursive state space model based estimation
algorithm.

@ Kalman filter can use estimation of parameter in EEE signal
processing.

@ Kalman Filter can use to noise estimation during Electrocardiography.
@ The extended Kalman filter as a pulmonary blood flow estimator

e Kalman filter approach to remove TMS(Transcranial Magnetic
Situmutation) induced artifact from EEG recording is proceed.

@ Kalman filter technique applied for medical image reconstruction.
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ Kalman Filter approach for cardiorespiratory signal extraction an
fusion of non-contracting sensors. so it is possible to measure in real
time heart and breathing rates using an adaptive Kalman filter
approach. Adapting the Kalman filter matrices improves the
estimation result and makes the filter universally deplorable when
measuring cardiorespiratory signal.
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ An adaptive Kalman filter approach for cardiorespiratory signal

extraction and fusion of non-contacting sensors
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ Global Kalman filter approaches to estimate absolute angles of lower
limb segments
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ A Kalman filter technique applied for medical image reconstruction

(a) (b) ic)
(e} in

Figure 6. a) Onginal image and results of reconstruction
from noisy projection using b) 5 projection ¢ 20 projection
d} 35 projection ¢) 45 projection ) 60 projection
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ Kalman filter can use estimation of parameter in EEG signal
processing.

fa} L]
Fig B0 Mean Inetantaneoss Irequency for right Band movement, (3] Channel C3 (b
Channel 4, In haosh figimes the Blue bee coomespancds b fhe Balman Smoother with B8 and
green line o the Kaliman Sswsother only.
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ Application of Kalman filter to remove TMS-induced artifacts from
EEG recordings

i TME conl

Iredge ooy G Messiin Lid
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KALMAN FILTER

KALMAN FILTERS IN BIOMEDICAL APPLICATIONS

@ An Adaptive Kalman Filter for ECG Signal Enhancement

=10 T
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® _11A = . I an-u-Lwd
.-r""il g —_— )
o 1E o |
1z e
SlEay E i 5 ) 25 *“r“HJr-I—r—*
o
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KALMAN FILTERS

o,
Biaasurement Updaie
. (i)
Time Update
(predicdon]
1 Compule the Halman G an
1 Projact tho siate ahaad e ot T k| = gul -1
- K, = F HOUHP RS + R)
¥, = AL, 4+ 8n
< Updsie the gdmale vo £
3 Priject e airngr covariants shesd 1 T+ Kplog =1 ij' |

Fo= AP AT+Q
3 Updata §he BITar covarsnes
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=i far k+1

A complete picture of the operation of the Kalman Filter.
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KALMAN FILTER

G(n) = F(n+ 1L,n)K(n,n— 1)CHm)[CM)K(n,n - 1)CH (n) + Q,(n)]
a(n) = y(n) — C(n)&(n\n - 1) innovation proces
£(n+1\n) = F(n+ 1,n)2(m\n—1) + G(n)a(n) State update
K(n) = K(n,n—1) = F(n,n + 1)6(n)C(n)K(n,n - 1) Kalman Gain

Kn+1,n)=Fn+1L,n)KMn)F(n+1,n)Q,(n) Ricatti equation
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The End
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