
Computational Intelligence Techniques

Busra Corak

Izmir Katip Celebi University

November 2019

1 / 93

2 / 93

Overview

Artificial Neural Network

Hidden Markov Model

Fuzzy Sets and Fuzzy Logic

Support Vector Machines

Hybrid Systems

3 / 93

Artificial Neural Network

The Perceptron/ADALINE-MADALINE Units

Multilayer Perceptrons

Hopfield Neural Networks

Kohonen’s Self-Organizing Map

LVQ(Linear Vector Qantization) Networks

ART(Adaptive Resonance Theory) Networks

Counter-Propagation Network

Cognitron and Neo-cognitron Network

4 / 93

Studies on artificial neural networks have started with the perceptrons.

The most important feature of these sensors is that they divide the
problem space into classes with a line or a plane.

The inputs of the problem are multiplied by the weights. The class of
input is then determined according to whether the value obtained is
greater than or less than a threshold value.Classes are represented by
the numbers 1 or –1 (sometimes 1 and 0).

The most important problem of single-layer sensors is that they
cannot learn nonlinear events.

5 / 93

The Perceptron/ADALINE-MADALINE Units

In the perceptron, weights are changed, while the inputs are
multiplied by a constant called the learning coefficient λ and added or
subtracted to the weights.Based on the inputs presented to the
network, weights are increased or decreased according to the value of
the output produced.

In the ADALINE unit, changing weights is based on the difference
between the expected output and the actual output (error) The new
weight values are determined by adding the value obtained by
multiplying the inputs with a learning coefficient λ of the error to the
old weights.

W t+1
i = [W t

i − λ(yi − f (ui))Xi] (1)

6 / 93

Multilayer Perceptrons

The most widely used model of artificial neural networks today is multilayer
perceptrons.Multilayer perceptrons have emerged as a result of studies to
solve the XOR problem.These perceptrons consist of three layers:

Input layer: Takes information from the outside world.In this layer
there is no information processing.

Inter-Layer (Hidden layer) : Processes information from the input
layer.It is possible to solve many problems with one hidden layer.If the
relationship between the input / output of the problem to be learned
by the network is not linear and the complexity increases, it can be
used in more than one intermediate layer.

Output layer:It processes the information from the intermediate layer
and finds the output produced by the network for the input presented
to the network. This output is transmitted to the outside world.

7 / 93

Multilayer Perceptron

8 / 93

Multilayer Perceptron

Training of the MLP network is based on the “generalized delta
rule.MLP network uses supervised learning strategies.During the
training, the inputs and the outputs that the network must produce in
response to those inputs are shown to the network.

The difference between the outputs produced by the network and the
outputs it should produce represented as ERROR.

During learning, the inputs are first presented to the network to
produce outputs corresponding to those inputs. This process is called
forward calculation.Then the produced output is compared with the
expected output,weights are changed by distributing the error
backwards. This is called backward calculation.

9 / 93

Factors affecting the learning of MLP networks are:

Selection of samples

Networking of inputs and outputs

Numerical representation of inputs and outputs

Assigning initial values for weights

Determination of learning coefficient and momentum coefficients

Networking of samples

Changing weights times

Scaling of inputs and outputs

Determination of stop criterion

Growing and pruning networks

10 / 93

Applications of MLP networks in engineering problems:

Classification

Prediction

Recognition

Interpretation

Diagnosis

11 / 93

LVQ (Linear Vector Quantization) Model

LVQ networks use the reinforcement learning . During the training,
only the inputs that are wanted to be learned are given to the network
and the network is asked to produce the output itself.

LVQ network consists of 3 layers:

Input Layer

Kohonen Layer

Output Layer

12 / 93

Each element in the input layer connected to each element in the
Kohonen layer.The weights of the connections from the input layer, to
the Kohonen layer form a reference vector.Only the values (weight
values) of these reference vectors are changed during learning.Only
the values of a single vector are changed at each iteration.

Each of the elements in the Kohonen layer is connected to only one
element in the output layer. The weights between the Kohonen layer
and the output layer are constant and their value is 1.

Each element in the Kohonen layer represents a reference vector and
competes with each other. The member with the shortest Euclidean
distance wins the competition. The winner of the competition gets 1
output and the other is 0.

13 / 93

The winning output element shows the class of the corresponding
input.If the input is correctly classified, the corresponding reference
vector is approximated to the input vector. Otherwise, it is
removed.Approximation and removing based on the learning
coefficient.

The most important problem of the LVQ network is that the same
vector gains very often and the learning performance of the network is
poor.

14 / 93

ART(Adaptive Resonance Theory) Networks

ART networks use the unsupervised learning.

The most important feature of these networks is that they can work
in real time and learn online.ART networks are very powerful to adapt
to new situations.

An ART network consists of two layers, the display layer F1 and the
category layer F2.

15 / 93

Output values from the F2 layer are calculated by using inputs which
are presented to the network from the F1 layer and upward weights.

The process element that creates the highest output value in the F2
layer takes the value 1 as the winning process element and the others
0. The weights connected to this element are changed.In order for the
winning element to show the class of the corresponding input vector,
the vector in the memory connected to it must be similar to the input
vector.

This similarity is decided by a coefficient called the similarity
coefficient.If two vectors are found similar, the input vector is
considered an element of that class.If there is no similarity, then the
orientation system creates a new class for that input vector.
Therefore, the number of classes in an ART network can be as many
as the number of instances.

16 / 93

Hopfield Networks

Hopfield network consists of a single layer which contains one or more
fully connected recurrent neurons.The Hopfield network is commonly
used for auto-association and optimization tasks.

Hopfield networks are associated with the concept of simulating
human memory through pattern recognition and storage.

17 / 93

Self Orginizing Map

A self-organizing map (SOM) is a type of artificial neural network
(ANN) that is trained using unsupervised learning to produce a
low-dimensional (typically two-dimensional), discretized representation
of the input space of the training samples, called a map, and is
therefore a method to do dimensionality reduction.

Self-organizing maps differ from other artificial neural networks as
they apply competitive learning as opposed to error-correction
learning (such as backpropagation with gradient descent), and in the
sense that they use a neighborhood function to preserve the
topological properties of the input space.

18 / 93

What really happens in SOM ?

Each data point in the data set recognizes themselves by competeting
for representation.

SOM mapping steps starts from initializing the weight vectors. From
there a sample vector is selected randomly and the map of weight
vectors is searched to find which weight best represents that sample.

Each weight vector has neighboring weights that are close to it.

The weight that is chosen is rewarded by being able to become more
like that randomly selected sample vector.

The neighbors of that weight are also rewarded by being able to
become more like the chosen sample vector. This allows the map to
grow and form different shapes. Most generally, they form
square/rectangular/hexagonal/L shapes in 2D feature space.

19 / 93

20 / 93

Training Algorithms

5 algorithms to train a neural network:

Gradient descent

Newton method

Conjugate gradient

Quasi-Newton method

Levenberg-Marquardt algorithm

21 / 93

22 / 93

Creating Simple Neural Network in Phyton

The beginning of the program just defines libraries and the values of
the parameters, and creates a list which contains the values of the
weights that will be modified.

Create a function which defines the work of the output neuron. It
takes 3 parameters (the 2 values of the neurons and the expected
output). “outputP” is the variable corresponding to the output given
by the Perceptron. Then we calculate the error, used to modify the
weights of every connections to the output neuron right after.

23 / 93

Creating Simple Neural Network in Phyton

Create a loop that makes the neural network repeat every situation
several times. This part is the learning phase. The number of iteration
is chosen according to the precision we want. However, be aware that
too much iterations could lead the network to over-fitting, which
causes it to focus too much on the treated examples, so it couldn’t
get a right output on case it didn’t see during its learning phase.

Finally, we can ask the user to enter himself the values to check if the
Perceptron is working. This is the testing phase.The activation
function Heaviside is interesting to use in this case, since it takes back
all values to exactly 0 or 1, since we are looking for a false or true
result. We could try with a sigmoid function and obtain a decimal
number between 0 and 1, normally very close to one of those limits.

24 / 93

25 / 93

26 / 93

27 / 93

28 / 93

29 / 93

Hidden Markov Model

The Hidden Markov Model is used as a classifier in signal processing
and is used mostly in the fields of sound, handwriting, body motion
recognition,word recognition, music notation monitoring, partial
charge discharge, bioinformatics, gene prediction and crypto analysis.

In the normal Markov Model, states are visible to the observer, and
therefore the only parameter is the state transition probabilities.

In the hidden Markov Model, the situation is not directly visible, but
the dependent outputs are visible.

The term Markov Analysis refers to a technique used to predict future
behavior, taking into account the current behavior of the system.

30 / 93

states:X

transition probabilities state:a

Output probabilities:b

possible observations: Y

31 / 93

Hidden Markov Models (HMMs) are a class of probabilistic graphical
model that allow us to predict a sequence of unknown (hidden)
variables from a set of observed variables.

A simple example of an HMM is predicting the weather (hidden
variable) based on the type of clothes that someone wears (observed).

HMMs are probabilistic models. They allow us to compute the joint
probability of a set of hidden states given a set of observed states.
The hidden states are also referred to as latent states. Once we know
the joint probability of a sequence of hidden states, we determine the
best possible sequence.

32 / 93

In order to compute the joint probability of a sequence of hidden states,
we need to assemble three types of information.Generally, the term
“states” are used to refer to the hidden states and “observations” are used
to refer to the observed states.

Transition data — the probability of transitioning to a new state
conditioned on a present state.

Emission data — the probability of transitioning to an observed state
conditioned on a hidden state.

Initial state information — the initial probability of transitioning to a
hidden state. This can also be looked at as the prior probability.

The above information can be computed directly from our training data.

33 / 93

For example, in the case of weather example in, our training data would
consist of the hidden state and observations for a number of days. We
could build our transition matrices of transitions, emissions and initial
state probabilities directly from this training data.

34 / 93

The joint probability of the sequence, by the conditional probability chain
rule and by Markov assumption, can be shown to be proportional to P(Y)
below.

35 / 93

Suppose we want to calculate a probability of a sequence of states in our
example, ‘Dry’,’Dry’,’Rain’,Rain’.

(Dry,Dry,Rain,Rain) =
P(Rain | Rain)P(Rain | Dry)P(Dry | Dry)P(Dry) = 0.3∗0.2∗0.8∗0.6

36 / 93

37 / 93

Suppose we want to calculate a probability of a sequence of observations
in our example, ‘Dry’,’Rain’.Consider all possible hidden state sequences:

P(‘Dry’,’Rain’) = P([‘Dry’,’Rain’] , [‘Low’,’Low’]) + P([‘Dry’,’Rain’]
, [‘Low’,’High’]) + P([‘Dry’,’Rain’] , [‘High’,’Low’]) + P([‘Dry’,’Rain’]
, [‘High’,’High’])

P([Dry,Rain] , [Low,Low]) = P([Dry,Rain] | [Low , Low])
P([Low,Low]) =P(Dry | Low)P(Rain | Low) P(Low)P(Low | Low)=
0.4*0.4*0.6*0.4*0.3

38 / 93

Training Algorithms

Viterbi algorithm, it’s directly applicable to the decoding problem in
HMM.

The Baum-Welch algorithm is proposed to solve the learning problem
in HMM.

39 / 93

Fuzzy Sets and Fuzzy Logic

The concept of fuzziness was first described in the 1960s by Lotfi
Zadehfrom U.C. Berkeley in his seminal papers on fuzzy sets.

It was extended to fuzzy logic, which is a superset of conventional
Boolean logic.

Fuzzy logic deals with a concept of partial truths, that is, truth values
between “completely true” and “completely false” similar to the way
fuzzy sets deal with partial memberships of an element.

When applied to real-world problems, fuzzy logic becomes a
structured, model-free estimator that approximates a function
through linguistic input–output associations.

40 / 93

A typical fuzzy system consists of It has found many applications, some of
which include fuzzy control in robotics, automation, tracking, consumer
electronics, fuzzy information systems such as the Internet, information
retrieval, fuzzy pattern recognition in image processing, machine vision,
and in decision support problems

Rule Base

Membership function

Inerface Procedure

Membership functions characterize the fuzziness in a fuzzy set – whether
the elements in the set are discrete or continuous – in a graphical form for
eventual use in the mathematical formalisms of fuzzy set theory.

41 / 93

The most basic element of fuzzy systems is the fuzzy set. The
mathematical models we have created to transfer verbal expressions
to the computer.

In a classical set, an element is either inside (1) or outside (0) of the
set. In fuzzy sets, an element has any membership value between 0
and 1.

A fuzzy set is characterized by a membership function, which maps the
elements of a domain, space, or an universe of discourse X to the unit
interval [0, 1], written as

A = X ∈ [0, 1] (2)

Membership functions characterize the fuzziness in a fuzzy set – whether
the elements in the set are discrete or continuous – in a graphical form for
eventual use in the mathematical formalisms of fuzzy set theory.

42 / 93

Properties of Fuzzy Sets

Having three fuzzy sets A, B and C and universal set U

Commutative Property

A ∪ B = B ∪ A (3)

Associative Property

(A ∪ B) ∪ C = (B ∪ C) ∪ A (4)

Distributive Property

(A ∪ B) ∩ C = (C ∩ A) ∪ (C ∩ B) (5)

Identity Property
A ∪ U = A (6)

A ∩ U = U (7)

43 / 93

Properties of Fuzzy Sets

Having three fuzzy sets A, B and C and universal set U

Idempotency Property
A ∪ A = A (8)

A ∩ A = A (9)

Transitive Property

(A j B j C) 99K (A j C) (10)

Involution Property

De Morgan’s Law

44 / 93

Fuzzy Systems

Fuzzy systems define the clusters and rules by associating all the
inputs with all the outputs. Therefore the operation of fuzzy systems
is similar to the operation of a mathematical cause-effect function.

One of the most important concepts in fuzzy systems is fuzzy rules.
Fuzzy rules contain fuzzy control rules designed to achieve the control
objective. The main purpose of this stage is to express expert
knowledge in cause-effect relationship. A fuzzy inference system
basically consists of 4 stages:Fuzzification, Inference, Aggregation,
Defuzzification

45 / 93

46 / 93

Fuzzy Rule Base: Rule base that ontains a number of fuzzy rules.

Fuzzification: A process to convert the crisp input to a linguistic
variable using the membership functions stored in the fuzzy.The
purpose of fuzzification is to map the inputs from a set of sensors (or
features of those sensors) to values from 0 to 1 using a set of input
membership functions.

Inference Method: Using the fuzzy rules converts the fuzzy input to
the fuzzy output.Inputs are applied to a set of if/then control rules.

Defuzzification: A process to convert the fuzzy output of the
inference engine to crisp using membership functions analogous to the
ones used by the fuzzifier.Fuzzy outputs are combined into discrete
values needed to drive the control mechanism.

47 / 93

To compute the output of this FIS (Fuzzy Interference System) given the
inputs, one must go through six steps:

1. determining a set of fuzzy rules

2. fuzzifying the inputs using the input membership functions,

3. combining the fuzzified inputs according to the fuzzy rules to
establish a rule strength,

4. finding the consequence of the rule by combining the rule strength
and the output membership function (if it’s a mamdani FIS),

5. combining the consequences to get an output distribution, and

6. defuzzifying the output distribution (this step applies only if a crisp
output (class) is needed).

48 / 93

Fuzzy Logic Image Processing

49 / 93

Fuzzy Logic Image Processing

This example shows how to use fuzzy logic for image processing.
Specifically, this example shows how to detect edges in an image.

An edge is a boundary between two uniform regions. You can detect
an edge by comparing the intensity of neighboring pixels. However,
because uniform regions are not crisply defined, small intensity
differences between two neighboring pixels do not always represent an
edge. Instead, the intensity difference might represent a shading
effect.

The fuzzy logic approach for image processing allows you to use
membership functions to define the degree to which a pixel belongs to
an edge or a uniform region.

50 / 93

Import RGB Image and Convert to Grayscale.Convert Irgb to grayscale so
that you can work with a 2-D array instead of a 3-D array.

Irgb = imread(’peppers.png’);

Igray = rgb2gray(Irgb);

figure

image(Igray,’CDataMapping’,’scaled’)

colormap(’gray’)

title(’Input Image in Grayscale’)

51 / 93

Convert Image to Double-Precision Data. The evalfis function for
evaluating fuzzy inference systems supports only single-precision and
double-precision data. Therefore, convert Igray to a double array using the
im2double function.

I = im2double(Igray);

52 / 93

Obtain Image Gradient. The fuzzy logic edge-detection algorithm for this
example relies on the image gradient to locate breaks in uniform regions.
Calculate the image gradient along the x-axis and y-axis. Gx and Gy are
simple gradient filters. To obtain a matrix containing the x-axis gradients
of I, you convolve I with Gx using the conv2 function. The gradient values
are in the [-1 1] range. Similarly, to obtain the y-axis gradients of I,
convolve I with Gy.

Gx = [-1 1];

Gy = Gx’;

Ix = conv2(I,Gx,’same’);

Iy = conv2(I,Gy,’same’);

53 / 93

Plot the image gradients.

figure

image(Ix,’CDataMapping’,’scaled’)

colormap(’gray’)

title(’Ix’)

figure

image(Iy,’CDataMapping’,’scaled’)

colormap(’gray’)

title(’Iy’)

54 / 93

Define Fuzzy Inference System (FIS) for Edge Detection.Create a fuzzy
inference system (FIS) for edge detection, edgeFIS.

edgeFIS = mamfis(’Name’,’edgeDetection’);

Specify the image gradients, Ix and Iy, as the inputs of edgeFIS

edgeFIS = addInput(edgeFIS,[-1 1],’Name’,’Ix’);

edgeFIS = addInput(edgeFIS,[-1 1],’Name’,’Iy’);

Specify a zero-mean Gaussian membership function for each input. If the
gradient value for a pixel is 0, then it belongs to the zero membership
function with a degree of 1.

sx = 0.1;

sy = 0.1;

edgeFIS = addMF(edgeFIS,’Ix’,’gaussmf’,[sx 0],’Name’,’zero’);

edgeFIS = addMF(edgeFIS,’Iy’,’gaussmf’,[sy 0],’Name’,’zero’);

55 / 93

sx and sy specify the standard deviation for the zero membership function
for the Ix and Iy inputs. To adjust the edge detector performance, you can
change the values of sx and sy. Increasing the values makes the algorithm
less sensitive to the edges in the image and decreases the intensity of the
detected edges.Specify the intensity of the edge-detected image as an
output of edgeFIS.

edgeFIS = addOutput(edgeFIS,[0 1],’Name’,’Iout’);

56 / 93

Specify the triangular membership functions, white and black, for Iout

wa = 0.1;

wb = 1;

wc = 1;

ba = 0;

bb = 0;

bc = 0.7;

edgeFIS = addMF(edgeFIS,’Iout’,’trimf’,[wa wb wc],’Name’,’white’);

edgeFIS = addMF(edgeFIS,’Iout’,’trimf’,[ba bb bc],’Name’,’black’);

57 / 93

Plot the membership functions of the inputs and outputs of edgeFIS.

figure

subplot(2,2,1)

plotmf(edgeFIS,’input’,1)

title(’Ix’)

subplot(2,2,2)

plotmf(edgeFIS,’input’,2)

title(’Iy’)

subplot(2,2,[3 4])

plotmf(edgeFIS,’output’,1)

title(’Iout’)

58 / 93

Specify FIS Rules Add rules to make a pixel white if it belongs to a
uniform region and black otherwise. A pixel is in a uniform region when
the image gradient is zero in both directions. If either direction has a
nonzero gradient, then the pixel is on an edge.

r1 = ”If Ix is zero and Iy is zero then Iout is white”;

r2 = ”If Ix is not zero or Iy is not zero then Iout is black”;

edgeFIS = addRule(edgeFIS,[r1 r2]);

edgeFIS.Rules

59 / 93

Evaluate FIS. Evaluate the output of the edge detector for each row of
pixels in I using corresponding rows of Ix and Iy as inputs.

Ieval = zeros(size(I));

for ii = 1:size(I,1)

Ieval(ii,:) = evalfis(edgeFIS,[(Ix(ii,:));(Iy(ii,:))]’);

end

60 / 93

Plot Results. Plot the original grayscale image.

figure

image(I,’CDataMapping’,’scaled’)

colormap(’gray’)

title(’Original Grayscale Image’)

Plot the detected edges.

figure

image(Ieval,’CDataMapping’,’scaled’)

colormap(’gray’)

title(’Edge Detection Using Fuzzy Logic’)

61 / 93

Support Vector Machines

In machine learning, support-vector machines are supervised learning
models with associated learning algorithms that analyze data used for
classification and regression analysis.SVM becomes popular because
of its success in handwritten digit recognition .

We could classify new emails into spam or non-spam, based on a large
corpus of documents that have already been marked as spam or
non-spam by humans. SVMs are highly applicable to such situations.

62 / 93

SVMs are based on the idea of finding a hyperplane that best divides
a dataset into two classes.

63 / 93

Support Vectors

Support Vectors are simply the co-ordinates of individual observation.
Support vectors are the data points that lie closest to the decision
surface (or hyperplane) .They are the data points most difficult to
classify.They have direct bearing on the optimum location of the
decision surface(hyperline).

Support vectors are the data points nearest to the hyperplane, the
points of a data set that, if removed, would alter the position of the
dividing hyperplane. Because of this, they can be considered the
critical elements of a data set.

64 / 93

What is a hyperplane?

Hyperplane is a line that linearly separates and classifies a set of data.

Intuitively, the further from the hyperplane our data points lie, the
more confident we are that they have been correctly classified.We
therefore want our data points to be as far away from the hyperplane
as possible, while still being on the correct side of it.

65 / 93

How do we find the right hyperplane?

How do we best segregate the two classes within the data?

The distance between the hyperplane and the nearest data point from
either set is known as the margin. The goal is to choose a hyperplane
with the greatest possible margin between the hyperplane and any
point within the training set, giving a greater chance of new data
being classified correctly.

66 / 93

What happens when there is no clear hyperplane?

In order to classify a dataset like the one above it’s necessary to move
away from a 2d view of the data to a 3d view. Explaining this is easiest
with another simplified example. Imagine that our two sets of colored balls
above are sitting on a sheet and this sheet is lifted suddenly, launching the
balls into the air. While the balls are up in the air, you use the sheet to
separate them. This ‘lifting’ of the balls represents the mapping of data
into a higher dimension. This is known as kernelling.

67 / 93

Because we are now in three dimensions, our hyperplane can no longer be
a line. It must now be a plane as shown in the example above. The idea is
that the data will continue to be mapped into higher and higher
dimensions until a hyperplane can be formed to segregate it.

68 / 93

Support Vectors

You need to remember a thumb rule to identify the right hyper-plane:
“Select the hyper-plane which segregates the two classes better”.

69 / 93

Hyperplane “B” has excellently performed

70 / 93

Frame Title

Maximizing the distances between nearest data point (either class) and
hyperplane will help us to decide the right hyperplane. The margin for
hyperplane C is high as compared to both A and B. Hence, we name the
right hyperplane as C.

71 / 93

We are unable to segregate the two classes using a straight line, as one of
star lies in the territory of other (circle) class as an outlier. One star at
other end is like an outlier for star class. SVM has a feature to ignore
outliers and find the hyperplane that has maximum margin. Hence, we can
say, SVM is robust to outliers.

72 / 93

SVM can solve this problem. It solves this problem by introducing
additional feature. Here, we will add a new feature z = x2 + y2

73 / 93

SVM Kernel Functions

SVM algorithms use a set of mathematical functions that are defined
as the kernel. The function of kernel is to take data as input and
transform it into the required form. Different SVM algorithms use
different types of kernel functions. These functions can be different
types. For example linear, nonlinear, polynomial, radial basis function
(RBF), and sigmoid.

Introduce Kernel functions for sequence data, graphs, text, images, as
well as vectors. The most used type of kernel function is RBF.Because
it has localized and finite response along the entire x-axis.

The kernel functions return the inner product between two points in a
suitable feature space. Thus by defining a notion of similarity, with
little computational cost even in very high-dimensional spaces.

74 / 93

Build a simple SVM using Matlab

75 / 93

76 / 93

Load the sample data

load dataname

Create data, a two-column matrix containing sepal length and sepal width
measurements for 150 irises.

data = [meas(:,1), meas(:,2)];

From the species vector, create a new column vector, groups, to classify
data into two groups: data and non-data

groups = ismember(dataset,’data’);

Randomly select training and test sets.

(train,test)= crossvalind(’holdOut’,groups);

cp = classperf(groups);

Train an SVM classifier using a linear kernel function and plot the grouped
data.

svmStruct = svmtrain(data(train,:),groups(train),’showplot’,true);

77 / 93

78 / 93

Add a title to the plot, using the KernelFunction field from the svmStruct
structure as the title.

title(sprintf(’Kernel Function: func2str(svmStruct.KernelFunction)),...
’interpreter’,’none’);

79 / 93

80 / 93

Use the svmclassify function to classify the test set.

classes = svmclassify(svmStruct,data(test,:),’showplot’,true);

81 / 93

82 / 93

Evaluate the performance of the classifier.

classperf(cp,classes,test);cp.CorrectRate

ans = 0.9867

83 / 93

Hybrid Systems

84 / 93

Fuzzy Neural Networks

While neural networks are low-level computational structures that
perform well when dealing with raw data, fuzzy logic deals with
reasoning on a higher level, using linguistic information acquired from
domain experts.

However, fuzzy systems lack the ability to learn and cannot adjust
themselves to a new environment. On the other hand, although
neural networks can learn, they are opaque to the user.

85 / 93

Fuzzy Neural Networks

A neuro-fuzzy system is a neural network which is functionally
equivalent to a fuzzy inference model. It can be trained to develop
IF-THEN fuzzy rules and determine membership functions for input
and output variables of the system.

While fuzzy logic provides an inference mechanism under cognitive
uncertainty, computational neural networks offer exciting advantages,
such as learning, adaptation, fault-tolerance, parallelism and
generalization. To enable a system to deal with cognitive
uncertainties in a manner more like humans, one may incorporate the
concept of fuzzy logic into the neural networks.

86 / 93

The computational process envisioned for fuzzy neural systems is as
follows:

It starts with the development of a ”fuzzy neuron” based on the
understanding of biological neuronal morphologies, followed by
learning mechanisms. This leads to the following three steps in a
fuzzy neural computational process.

development of fuzzy neural models motivated by biological neurons,

models of synaptic connections which incorporates fuzziness into
neural network

development of learning algorithms (that is the method of adjusting
the synaptic weights)

87 / 93

Two possible models of fuzzy neural systems

In response to linguistic statements, the fuzzy interface block provides an
input vector to a multi-layer neural network. The neural network can be
adapted (trained) to yield desired command outputs or decisions.

88 / 93

A multi-layered neural network drives the fuzzy inference mechanism.

89 / 93

The structure of a neuro-fuzzy system is similar to a multi-layer neural
network. In general, a neuro-fuzzy system has input and output layers, and
three hidden layers that represent membership functions and fuzzy rules.

90 / 93

Neural networks are used to tune membership functions of fuzzy
systems that are employed as decision-making systems for controlling
equipment.

Although fuzzy logic can encode expert knowledge directly using rules
with linguistic labels, it usually takes a lot of time to design and tune
the membership functions which quantitatively define these linquistic
labels.

Neural network learning techniques can automate this process and
substantially reduce development time and cost while improving
performance.

Based upon the computational process involved in a fuzzy-neuro
system, one may broadly classify the fuzzy neural structure as
feedforward (static) and feedback (dynamic).

91 / 93

A typical fuzzy-neuro system is Berenji’s ARIC (Approximate Reasoning
Based Intelligent Control) architecture. It is a neural network model of a
fuzy controller and learns by updating its prediction of the physical
system’s behavior and fine tunes a predefined control knowledge base.

92 / 93

Frame Title

The End

93 / 93

