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Gait Analysis

 Gait analysis is the systematic measurement, description, and
assessment of those quantities thought to characterize human
locomotion.

 Through gait analysis, kinematic and kinetic data are acquired and
analysed to provide information which describes fundamental gait
characteristics and which is ultimately interpreted by the clinician(s)
to form an assessment.

* In the past, gait-related diseases were diagnosed with human
observing. With the development of technology, gait analysis is
performed with sensitive devices.
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Objective AALAALA

Heelstrike Footflat Midstance Pushoff  Acceleration Midswing Deceleration

* Analyzing human movements

:::::::

* Measure angles between the limbs

* Sports Biomechanics (Sports Performance)
* Kinematic data collection

* Kinetics data calculation with software

 Load distributions on joints, Implant
designs

* Ergonometric designs




Data Analysis Techniques in Human Movement

Biomechanical Data

Analysis Types

|
| | |
: : .. Muscle Observations

M rin -
eanJ g MoCap IFO]E‘Ce EMGs To;;:;r:gisnd
Techniques Ao =
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Motion Capture Technologies

 Motion Capture (MOCAP) is sampling and recording
motion of humans, animals and inanimate objects as 3d
data for analysis, playback and remapping

* Performance capture is acting with motion capture in
film and games,

* Military and medical research purposes ---,,////\/\/\,,,H\\Lm\,, i

* The idea of motion capture was first put forward by )
Eadweard Muybridge in 1877 (Zoopraxiscope). MOCAP suit

* Etienne-Jules Marey collected the movement data with
the MOCAP suit that was developed in the same years.
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Optoelectronic
Measurement
Systems (OMSs)
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Optoelectronic Measurement Systems (OMSs)

* Reflective markers N [ A
e Active and Passive Marker 1 & > ;
e Up to 5000fps, under Imm accuracy e ,R

* Gold Standard in motion capture - o

* Pros
* Very accurate

* Cons
* Bound to restricted area
* Line-of-sight necessary
* Highly sensitive for shift (disturbances) of cameras
e Sunlight interferes measurements




Electromagnetic Measurement Systems
(EMSs)

* Electromagnetic sensors placed on joints or other critical points

* Measures orientation and position of sensor relative to
electromagnetic field generated by the transmitter

* Pros
* Large volumes
* No-line-of-sight necessary

* Cons
* Less accurate than OMS
* Sensitive to ferromagnetic disturbances
* Noise progressive to distance from base station

* Low sample frequency




Image Processing Systems (IMSs)

* |n image processing captured films or photos are digitally analyzed.
* No marker, No sensor

* Computer Vision Algorithms
* High-speed cameras

* Pros
e Better accuracy than EMS
* Improved range compared to OMS
* Markerless tracking possible

* Cons
* Currently outperformed by EMS, OMS
e Requires self-development

x
}

without Soft Tissue Motion with Soft Tissue Motion




Inertial Sensory Systems (IMUs)

* Inertial trackers placed on joints

* Measures orientation and position with accelerometers, gyroscopes,
magnetometers on each segment

* Pros
* Minimally invasive
* Large volume

* Cons
* Cannot measure position stand-alone

* Dependent on fusion filter

11



ROKOKO, KINECT, OPTITRACK Systems

Table 1 Comparison of ROKOKO, KINECT and OPTITRACK systems

Sample Rate 100 FPS 30 FPS 120 FPS 120FPS
Sensor 19 - - 3
Camera - 2 6

Connections WIFI USB USB WIFI
Latency - - 10ms 20ms
Price 1250£ 3995 9995-59995 per 36005

camera




Movements VHL S/

e Abduction-Adduction Abduction Adduction

* Flexion-Extension

* Internal-External Rotation

* Fugl Meyer EXTENSION §T
. - . \FLEXION .
* Coronal, Sagittal and .- ' O\ 1 | h},-,
/ | )
A0 A
Transverse planes ey (TN T
W
lrom_.'.n"bd‘ ' \”}
.
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I \

Demonstration of
movements to
subjects

OPTITRACK System

Rokoko Mocap Suit and Xsens Motion Tracke

14



Force Platform / Plates

* Force plates are tools Velocity (m/s)
used for the *Power (Watts)
: g -Displacement (Meters) okl platiorm center
meas.urement OT groun Temporal parameters (seconds)
reaction forces ‘Left/Right Asymmetry PP, |

(GRF) during walking,
jumping, or any other
type of movement.

* Vertical force

* Shear Force

e Lateral and horizontal
forces.

 Load cells (Newton)

15
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Insole Pressure Sensor

* It provides a topographical image
of pressure variation across the
contact area.

* Foot pressure distribution

* Force sensitive resistors (FSR)

4
Feir(Extended Little Toe Force) —

' 1
Fip(Ferce af Litile Toe FSR S(‘Mur)—\"'/ 110
\E

Fpi(Extended Left Force) |
\
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Electromyography (EMG)

* It is a diagnostic procedure to assess the
health of muscles and the nerve cells that
control motor neurons. EMG results can
reveal nerve dysfunction, muscle
dysfunction or problems with nerve-to-
muscle signal transmission.

R CeoeEE
;
r

................

Muscle

/

—— Needle electrode
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Gait Cycle

BAC 3

BAC 1

BAC 2

Double Support |

BAC 4

Single Support

BAC 5

Double Support Iil

BAC 6

HEEL STRIKE
—_—

MID STANCE

L«

TOE-OFF

BAC 7 BAC 8

Initial
Contact

Loading
Response

Mid
Stance

Terminal
Stance

Pre-
Swing

Initial
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Mid Terminal
Swing Swing
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R —=—

Stance

\

Stride

(Gait Cycle)

X

Swing

/

,(>

e Gait cycle is the time

between successive
foot contacts of the
same limbs. Thus, one

gait cycle begins when

the reference foot
contacts the ground

and ends with

subsequent floor
contact of the same

foot.
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Left Right
hemiplegic side unaffected limb
Gait Abnormalities

https://stanfordmedici
ne25.stanford.edu/the
25/gait.html

Hemiplegia Parkinson's disease Cerebellar ataxia Footdrop Sensory ataxia

19


https://stanfordmedicine25.stanford.edu/the25/gait.html

KATIP CELEB]
UNIVERSITES

Gait Pathologies

e Parkinson’s e Diabetic
* Cerebral Palsy Neuropathy

e Orthoses Design * Alzheimer’s
e Lower Limb * Normal Pressure

Osteoarthritis Hydrocephalus

. * Knee
Stroke Replacement
 Multiple Sclerosis

. | Huntington’s
e Spinal Cord Injury Down Syndrome
* Anterior Cruciate .

DRanggen
* Prosthetics . , .
Design Quality of Life

Fall Risk Analysis

Normal Pressure Knee Replacement_ Huntington's _Down Syndrome _psychogenic Disorder
1% 1% 1% 1%

Hydrocephalus i
1%

Alzheimer's
2%

Diabetic Neuropathy
3%
Prosthetics
3%

Otheg,//
3% /
Anterior Cruciate

Ligament

3% i

Spinal Cord Injury
4%

Multiple Sclerosis
5%

_Quality of Life

Parkinson's
29%

Cerebral Palsy
17%

Post Stroke
6%

Lower Limb
Osteoarthritis
6%

Orthoses
13%

20



Gait Features and Gait Pattern

* Gait Speed

* Angular
Velocity

e Vertical
Position

* Joint Angles
e Cadence

e Stride Length
* Energy Cost

* Step Length-
Width

e Stance time
* Swing time

* Double
support time

* Moment

127

alns
790
ATS
o6l

“as F‘;R Lot | .
— —=FSR heel (

II_ Gait Event
< CADENCE (pts)

Gyro (rad/s)
v

§
)
V)

FF range (pis)

0 HO range (pls)
T MMSW range (pts)
] 4 TO range (pts)
© HS range (pts)

Angular velocity (rad/s).
FSR toe (V), FSR heel (V)

* Gait stability
* Gait

complexity

21




 Artificial Intelligence (Al) Techniques in Gait

Analysis

* Human Activity Recognition

* Classification of pathological gait patterns

* Person identification and gender classification

* Gait event detection

* Analysis of gait pattern of the prosthetic limb

* Analysis of sports movements and design sports equipment

: . Neural
Gait Data . SSIEFCAtiIe . Network . Gait Class
Collection Extraction o
Classified

22



KATIP CELERI from sklearn.svm import SVC # "Support vector classifier’
UNIVERSITESL model = SVC(kernel="linear’, C=1El@)
model. it (X, y)
°
»>» import numpy as np
>>> from sklearn import hmm
»>»» startprob = np.array([@.6, 0.3, @.1])
»»»> transmat = np.array([[@.7, ©.2, ©.1], [@.3, &.5, @.2], [@.3, 8.3, 0.4]1])
*»»» means = np.array([[e.8, 8.8], [3.8, -3.8], [5.8, 18.8]])
»>»» covars = np.tile(np.identity(2), (3, 1, 1})
»>»» model = hmm.GaussianHMM(3, "full", startprob, transmat)
° »»» model.means_ = means
e Support Vector Machine (SVM)
»»» X, Z = model.sample(10@)
: import numpy as np
* Hidden Markov model (HMM -
I en ar OV O e import pandas as pd
from sklearn.metrics import confusion_matrix
o o . from sklearn.cross validation impeort train_test split
L D T " from sklearn.tree import DecisionTreeClassifier
ecision Tree inp
from sklearn.metrics impeort accuracy_score
from sklearn.metrics impert classification_report
* KN t Neighbor (kNN import numpy as mp
eares el or import numpy as np
lmport pandas as pd
. from matplotlib import pyplot as plt
) N B y from sklearn.datasets import load breast cancer
alve a es from sklearn.metrics import confusion matrix
from sklearn.neighbors import ENeighborsClassifier
. from sklearn.model selection import train test split
* Multi L P t MLP - | -
UItI Layer rFerceptron import seaborn as sns
/ sns.set ()
from sklearn.neural network import MLPClassifier
X = 0, 01, [1, 11]
y = [0, 1]
clf = MLPClassifier (sclwver="1lbfgs"', alpha=le-5,
hidden layer sizes=(53, 2}, random state=1) 23



Human Activity Recognition (HAR)

* The movements of humans are identified for eldercare, home
nursing, security, fall detection, and gait analysis.

* Movements : walking, jumping, lying, climbing the stairs, etc.

* Measurement techniques: Accelerometer or Video-based (Image
Processing)

* Devices: Smartwatch, Smartphone, IMU sensors and Optoelectronics

T BEERR

24
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KATIP CELEB] Table 1: Review of studies on the accelerometer; measurement systems and their performance with

ONIVERSITESL ° ° artificial intelligence techniques and classifier
Study System #8ubjects Methods Activities Accuracy
ReVI eW Of St u d I es Mathie, 2004 | Waist- 26 Volunteers | A Binary De- | Falling, Walk- | 98.9%
[13] mounted cision Tree ing, Sitting,
Triaxial IMU Standing, Lying
Pirttikangas, | The Cookie | 9 Males and 4 | Multilayer Typing, Watch- | MLP
on the accelerometer 000 1) | il Ace. | Fomalos | Perceptrons_|ing TV, Drine. | 80765
and kNN | ing, Stairs | KNN 92.80%
Classifiers Ascent and
Descent
o o o B Anguita, Smartphones | 30 Volunteers | Support Vec- | Walking, Up- | 89.3%
[ FI rst a p pl Icat I O n S I n 1999’ 2012 [15] tor T.\'Iachine ﬁtal:rs1 Dofvn—
(SVM) stairs, Standing,
Sitting, Laying
He, 2000 [16] | ADXL330 9 Malesand 2 | SVM Running, Jump- | 97.51%
Triaxial Acc. | Females ing, Walking,
5till
Activity signal == Feature extraction —p Model training —» Activity inference Krishnan, Ace. placed | 10 Bandom | AdaBoost, Walking, Sit- | Adaboost
2008 [17] at hip Subjects SVM, ting, Standing, | 92.81%,
RLogReg Running, Bi- | RLogReg
( Kneaest nu;i,hl'mr Jl E  opsains eycling, . Lying | 86.55%,
( Naive Bayes Down, Climbing | SVM 82.28%
Meural Stairs
nemwork ! m x Leonardis et | Tri-axis Ace. | 15 Young | kNN, Feed- | 8 Human Activi- | KNN
al., 2018 [1§] Volunteers forward ties 93.4%, FNN
» - - Neural Net- 90.7%,5VM
L ] O% work (FNN), 91.9%, NB
| 0 Byes (D) oLk DT
(- Gaussian Mixture j = l!j Decision
= | Tree (DT)
(Hlddcn \-ankn'-mcdclj . d Watching TV ] Kwon, Smartwatch | Two Volun- | ANN, Ran- | Eleven  Activi- | ANN  95%,
( Support veelor machine } 1 : 2018[19] teers dom Forest | ties RF 92.5%
(RF)
Altun, 2010 | Xsens Eight Sub- | kNN, 19 Different Ac- | KNN 98.2%,
[20] Awinda jocts SVM,ANN, | tivities SVM 98.6%,
Acc. Least- ANN 86.9%,
Squares LSM 89.4%,
Method BDM 99.1%
(LSM),
Bayesian
Decision
Making
(BDM)
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Video-based HAR

e Using video records or the sequence of images

* The Charades dataset (Training Set: 7985 videos, 157 activities,
Validation Set: 1863, Test Set: 2000 videos)

* Smartphones Data Set (30 volunteers, Six activities : Walking, Walking
upstairs, Walking downstairs, Sitting, Standing, Laying)

)

Agenda/Calendar

cl
ecision- i
\ Profiling

Frame 384 Frame 420 Frame 468 Frame 481 Frame 487 a’? , |‘u E';':rfs:;y




Abnormal Human Activity Recognition for
Elderly Home Care Khan et al. (2011)

* Video sensor based (multiple cameras)

* six abnormal activities; forward fall, backward fall, chest pain, faint,
vomit, and headache

* Six persons (4 men, 2 women) performed the activities by repeating
ten sequences for each activity. ._ -

e k-means, Hidden Markov Model (HMM)
* Recognition rate of 95.8% -m




Automatic nursing home systems

e Optoelectronics method
* Fuzzy rule approach

* There are six action datasets,
which are done by six persons.

 Six actions: walking from left to
right, walking from right to left,
jumping, crouching, climbing up
and climb down.

* Recognition accuracy of 91.8%

Chang et al. (2009)

$R[A[[A
ALUAR] S B
AL 8% 4.
LICIESCArd

S1C N 2 2 e
LY




SVM(Q)

He et al. (2012)

Fall Detection

* Using Smartphone
* Smartphone in this system is worn on the waist.

* Five different patterns: vertical active, lying, sitting or static standing,
horizontal active and fall.

* Support Vector Machine (SVM) | [

Decision system
|

4 ] . ’ : Warning procedure High level
] L = SVM fEI|| . activated
— - | Medium level
_______ E_EJI_TDEE_S_U!I_‘_ mmmme mm e = =i = . . Problem/absence Verification of the W
Interface questionaire
9 Ik of response emergency level
| wa No/minor
! problem Low level
i Update database
U ! ] 1 | 1

29



Alaqtash et al. (2011)

Classification of pathological gait

* The discrimination of gait patterns of healthy, cerebral palsy (CP) and
multiple sclerosis subjects.

* GRFs

* Twelve healthy adults, four spastic diplegic cerebral palsy patients,
four multiple sclerosis patients

* A total of 19 features
* Nearest neighbor classifier (NNC) and artificial neural networks (ANN)
* The classification accuracy is 95%
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Classification of pathological gait E

e Discriminate between healthy and pathological gait patterns as a
result of stroke or acquired brain injury (ABI)

 Kinect skeletal tracking sequences, pressure mat

e 20 healthy young adults, 20 mobility impaired adults

00000000000000

* 30 steps for each walking condition

* Features: Joint angles, Velocity and acceleration, Upper limb, Trunk,
Lower limb

* k-nearest neighbor, Gaussian Process Latent Variable Model

Dolatabadi et al. (2017)



* The classification accuracy is 95.8% £ 9‘
c 0.95 | @&
"% 0.9
E o035
é og LI . I, BN I, B
Wu and Su (2000) 5 10 15 20 25

Classification of pathological gait
* The discrimination of gait patterns of healthy and ankle arthrodesis.
* Force platforms

* 40 control trials and 23 patient trials for training and 19 patient trials
for validation. Ten normal subjects for comparison

* Time domain features
* Three-layered feed-forward back propagation neural network

number of hidden neurons 32
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Clinical implications of surgery or rehabilitation

* To classify the gait patterns of patients with ankle 0 fers o
arthrodesis and normal subjects Forea fore - E’*‘/\m Fs,/”
'\. \““x._, /‘,’
 Two force plates w0 NV
] . 0 10 20 30 40 50 60 70 80 90 100
* 10 healthy persons and 10 patients who had solid 07 FB % Stme Phas
) I N
arthrodesis of the ankle vt &y o > 1?'9\"
* A total of nine force parameters, stance phase mlﬂ S
perlod hﬂﬂ 10 20 30 40 50 6{1/ '?quS':)ceS‘[[])h;:l:J
* The genetic algorithm neural network (GANN), 3100 «j;/
., . e e e Vertical force
traditional artificial neural network(ANN) fo0 J
4—¢-—-—T3
* The classifications accuracies are 98.7% for GANN T
and 89.7% for ANN v e The

Wu and Su (2000)
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Person identification and gender classification

* Human gait is a promising biometrics resource. !A l! l A,‘A !A l oot

. . . Averaged
* Silhouette-based gait analysis '] '] l] 'l l Sattimage

* Head, arm, trunk, thigh, front-leg, back-leg, and L e
fe et . Slmllanty‘l\f‘leasure ) Template

]
A

Gallery

\J
' Selected
* AGls in the gallery set gl e
* e
EXPERIMENTAL RESULTS FOR HUMAN GENDER RECOGNITION FROM AVERAGED GAIT IMAGES o
° SV M b d 0 1 ~1 2 2 3 ~3 4 ~4 5 ~5 6 ~6 7 ~7 Averaged
= a S e Al 98 85 98 86 96 89 93 85 98 73 98 74 93 80 95 Gait Image
B 98 91 100 83 98 91 94 80 98 74 98 76 98 70 98
C 96 93 96 72 96 87 91 80 96 76 94 76 96 74 93
D 82 71 86 71 84 78 86 68 82 69 80 73 85 64 84 | Gait
E 84 76 74 64 79 78 79 64 83 67 81 66 81 55 76 . a
F 76 80 83 71 78 81 76 73 73 65 75 66 76 57 81 Seq uence
G 74 74 81 64 78 81 74 76 72 67 78 57 71 50 69
H 92 84 92 76 91 81 89 70 88 70 89 68 88 76 92
1 84 88 93 76 81 81 84 71 88 66 84 66 86 69 86
] 93 88 92 85 92 86 87 59 94 71 90 64 94 76 86
K 94 88 91 82 97 85 97 76 97 73 91 76 97 67 94
L 82 82 76 76 82 82 82 82 67 79 73 70 76 48 79
The first column contains he IDs fm’ lhe 12 probes and the other columns contain the recognition rates for different parts. Column “0™ lists the Ll et al. (2008)

averaged gait images. * A *6,” and “7" indicate that gender is recognized by head. arm, trunk, thigh, front-leg, back-leg, and
feet, respectively. “~1. ~37" 5.7 “~6," and “~7" indicate that gender is recognized by the averaged gait image without head, arm,
trunk, thigh, front-leg, back- ]eﬁ, and feet, respectlvely The table entries are percentages.




3. Motion analysis and feature extraction for

Person identification and gender classification

1. Detection and extraction of the moving human

body

2. Extraction of human gait signature by the joint

angles and body points

classifying gender in the gait patterns

¢ T h e S OTO N d a ta b a S e; DV Ca m e ra S (a) Sample Image (b) Background Subtraction (©) Object etion

e SVM classifier, 19 important features (joint angles,
temporal and spatial parameters)

* The classification accuracy is 96% for 100 subjects Yoo et al. (2005)

35



Gait Event Detection

Hanlon et al. (2009)

* Twelve healthy individuals (eight
males and four females)

(A) FSR (B) AccA
* Three conditions: normal, slow, and « O e
altered (reduced knee ROM) walking Nt SUCUR. S—— ™ B
* Force sensing resistor (FSR), A force i | i i
plate, A 6- camera Hawk motion = 4 |
analysis system, accelerometers S v 17 0 w _mo

* The optimal accelerometer algorithm
(AccA) was used.

* Mann—Whitney U-tests at a 95%
confidence level



Analysis of gait pattern of the prosthetic lim

* Intelligent leg prosthesis

* According to the moving feature of human leg, and
consists of the position, velocity

* Single-axis mechanism, Servo motors

* Non-linear dynamics model and Proportional-
Derivative (PD) control algorithm to improve the
robustness, speed of response, intelligent behavior
and position accuracy of this servo system.

* Designed by CAD software

* The lower limb gait data of healthy young woman is
gathered from VICON MX motion capture system.

Enee angle (deg)

Zhang, et al. (2010)
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Overview

Radiological Images Finite Element Method

v v v
3D Reconstruction 3D Printer Technologies 3D Modeling
v ] ]

Application Methods and

File Format and Software 3D Printer Software
Software

39
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Mammography

Mammography

Radiological Images

Convertible as 3-Dimensional Produces 2-Dimensional Produces 3-Dimensional Images

Model Images but can not be converted as 3D

« Computed Tomography

CT

e . * Digital Mammography Ultrasound
* Magnetic Resonance (MR) * Digital X-ray -
* Dental Panoramic Digital X 5 UhzsenesEshy

Ray :

Conventional X-ray

e Digital Subtraction

Angiography (DSA) e Color Doppler
* Positron Emission e C-arm X-ray

Tomography (PET-CT) Ultrasonography DEXA
 Single Photon Emission o

Computed ~ Tomography  ° Digital Fluoroscopy « Bone Densitometer (DEXA)

(SPECT)

40
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3D Image Reconstruction

RCCA== '\ | -

M

F

Dental Panoramic X-Ray

Se 1001 Dynam ol D55
Im:0
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Digital Imaging and Communications in
Medicine (DICOM)

* DICOM® is the international standard to transmit, store, retrieve,
print, process, and display medical imaging information.

 All radiological devices support this format.

* DICOM Format Contents
* The imaging modalities properties (Device, Voltage, Current,...)
Patient Information (Name, Gender, Age, Birth date)
* Image Properties (Slice thickness, pixel spacing,...)
Study Information (Date, ID,...)
Clinical Information (Protocol Name, Coord. Center,...)
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Calculating 3D from 2D

* Import DICOM image to software

* Image Segmentation

* Threshold algorithm

* Region-Growing algorithm
Morphological segmentation
Neural network segmentation
Adaptive segmentation
* Semi-Automatically segmentation

* Calculating 3D model from Mask
* Editing and repairing
* Export STL files for 3D printer (STEP, IGES, Parasolid or STL files for FEA)
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3D Reconstruction Software

3DSlicer OsiriX

ITK-SNAP MIMICS

MeVisLab Amira
MIPAV Simpleware
MITK Analyze

Amira

W WAHETH S50 - RANETH 57 Mmes - (Aot Corpremsed” - Mamcs 113 BITA o -
fin Gt Vew Mesmmmets oo fimr fagmanmen Smusen MestaO FEACHO Pegsirmen Gpen Optem Hep

Simpleware




Editing and repairing

 Rough surfaces can cause problems both in 3D printer and analysis
software. Therefore, they should be cleaned using various operators.

Before editing the femoral head After using Wrap and smooth operators

* Wrap operator provides that gaps are closed.

 The smooth operator removes rough surfaces in the 3D model. 45



3D Printer Technologies

3D printers can use many different technologies. The differences
between the technologies are related to how the layers are created.

Some technologies used by 3D printers;
* SLS (Selective Laser Sintering)

* FDM (Fused Deposition Modeling)

e STL-SLA (Stereolithograhpy)

These technologies are some of the most used 3d technologies.

46



[ZMIR

FDM | Fused Deposition Modeling

* FDM is a filament-based technology where a temperature-controlled
head extrudes a thermoplastic material layer by layer onto a build
platform. A support structure is created where needed and built in a
water-soluble material.
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Why choose FDM?

* The great advantage of FDM is the durable materials it uses, the
stability of their mechanical properties over time, and the quality of
the parts. The production-grade thermoplastic materials used in FDM
are suitable for detailed functional prototypes, durable manufacturing
tools and low-volume manufacturing parts.

HOZZLES

_— __—— FOAM SLAB

4 ™
':‘ \
| 1A | - o =
@ T n R EXTRUSION
SUPPORT =" i’
BUILE MATERIAL BUILD PLATECEM I ;
SPOOL [MOWVES IN T AXIS)
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Infill & Shell Thickness

* FDM parts are usually not printed solid to reduce the print time and
save material. Instead, the outer perimeter is traced using several
passes, called the shell, and the interior is filled with an internal, low-
density structure, called the infill.
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Materials for FDM

* ABS (Acrylonitrile Butadiene Styrene)

» ABSi (Acrylonitrile Butadiene Styrene — Biocompatible)

* ABS-M30i (Acrylonitrile Butadiene Styrene — Biocompatible)

* PLA (Polylactic acid)

* PC (Polycarbonate)

e PET (PolyEthylene Terephthalate)
* Thermoplastic elastomer (TPE)

Engineering PA 12
TPU PAT
PETG PA6

| ABS PS HIPS

I
: PVC

1

1

1

1

1

|

I

I

I

I

[}

I

I

I PC

1

1

| PPE

1

1

1

! £

] ]
£
£

Semi-Crystalline

Amorphous

e/Cost

rature/Pel

Q.
[

o
o
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Material Characteristics

*Good strength
ABS *Good temperature resistance
*More susceptible to warping

*Excellent visual quality
PLA *Easy to print with
*Low impact strength

*High strength
Nylon (PA) *Excellent wear and chemical resistance
*Low humidity resistance

*https://www.3dhubs.com/knowledge-base/fdm-3d-printing-materials-compared

LayWOOD uﬁm/ PLA 4043D


https://www.3dhubs.com/3d-printing/plastic/abs
https://www.3dhubs.com/3d-printing/plastic/pla
https://www.3dhubs.com/3d-printing/plastic/nylon
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Cartesian, Delta, and Polar

e Cartesian: These printers are named after the most widely used
coordinate system which helps robots to decide where and how to
move. They will typically have a square print bed which will run along

the Y-axis. The X-axis will carry the print head and for the Z-axis (up
and down) movement

Delta
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Cartesian, Delta, and Polar

* Delta: Deltas will usually feature a circular print bed. The extruder will
be suspended above that by three arms in a triangular configuration
(thus the name “Delta”). These nifty robots were designed for speed
and they also have the advantage of a print bed that does not move

which could be advantageous for certain prints. J
¥ W‘




[ZMIR

Cartesian, Delta, and Polar

* Polar: These machines use polar coordinates. This system is similar to
the Cartesian except that the coordinate sets describe points on a
circular grid rather than a square.
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SLS | Selective Laser Sintering

* SLS uses a high-powered CO, laser to fuse small particles of powdered
material to create 3 dimensional parts. The laser selectively
fuses powdered material by scanning X&Y cross-sections on the
surface of a powder bed. The model is built one layer at a time from
supplied 3D CAD data. SLS is capable of producing highly durable
parts for real-world testing. Scanner

Laser

Powder
Delivery

Fabrication

Selective Laser Sintering (SLS)
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* During SLS, tiny particles of plastic, ceramic or glass are fused
together by heat from a high-power laser to form a solid, three-

dimensional object. aaw
panil SN

-— X-Y scanning mirror
Laser beam
/ Sintered part

Powder bed

Laser

Leveling roller

Powder feed
supply

Powder feed piston
Fowder feed piston

Build chamber /

Powder fead supply

Build piston Copyright € 2008 CustomPariNet
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Advantages

* Produce highly complex geometries
* Durable, high-heat and chemically resistant applications
* Impact-resistant parts for rigorous use
* |deal for snap fits and living hinges

* Low-volume production solutions

* Major time and cost benefits

 Large build platforms available
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 Stereolithography is a laser-based technology that uses a UV-sensitive
liquid resin. A UV laser beam scans the surface of the resin and
selectively hardens the material corresponding to a cross section of
the product, building the 3D part from the bottom to the top. The
required supports for overhangs and cavities are automatically

generated, and later manually removed. P
0




Formlabs

https://www.youtube.com/watch?v=b-slcYoS8isl



https://www.youtube.com/watch?v=b-sIcYo8isI
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3D PRINTER SOFTWARE

Sprout » () wasmﬁk ®Polaroid

CUBICON @®D=0

FLASHFORGE
3D PRINTER

DYNAMOID 6
Glzmo3D 1
5 PRINTERS FS|.3D& FUEI.SD
mODOX ) sHinngsp RIRMSESD
M MakerBot >V< SINTERIT Photogéntr"ic

Stalactite
T;ert‘une
AR
[l MASS PORTAL

6@05@@ MIICRAFT+ @UItimaker
MATTEr ¢ FOrM ZOFFOX DREMEL

Others

Repetier Host

Some of the most used
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Finite Element Method

* FEA is a numerical method designed to solve engineers' problems.

* Complex geometric shapes are divided into smaller pieces to define a
limited number of elements.

* It was first used for stress analysis of aircraft bodies in 1956.
* When the forces f, and f, are applied, the displacements u, and u, occur.

ELEMENTS

NODES

Force and displacement on the spring. Elements and Nodes.
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Finite Element Method

kK —kj(u _ (fi
[—k k ] {uz} - {fz}
* k, is the stiffness matrix for a spring element, u is the nodal
displacement, and f is the nodal force.

C s R A o C Au o=F o = Ee
Plastic Region & = u_o A
B p=rusensrasass B ; .
" ; : - N E 1s Young's modulus
wvi ' . . —
g ; € 1S strain 0 1S SUess (mz )’
O 1 . .
wn S 5 F 1s force applied,
/& 5
& : ) .
& ; von Mises criterion states
i 2 < 1 2 2 2
A - C oy =3 (07 — 03)“+ (01 — 03)“+ (0, — 03)°]

Stress and strain relationship. Gy, Gy, O3 are principal stresses



Finite Element Analysis (FEA)

Steps to solve the finite element problem;

Import Geometry (STL, STEP, IGES, Parasolid, etc.)
Define Material Properties

Set Mesh Parameters

Define Boundary Condition

Apply Force and define force direction

o Uk wh =

Solve FE problem



KATIP CELEB]
UNIVERSITES

Finite Element Software

Elmer FEM solver
FEBio
FEATool Multiphysics
Hermes
MFEM

Range Software

25 Abaquu/CAE 6173 - Model Dytabase:
®

en

de Model Vieaport
ELT Y]

Ansys
Abaqus
Comsol Multiphysics
ADINA
Nastran

Autodesk Simulation

s bep A
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8

Autodesk Simulation
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Thanks for listening




