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Signals

Signal : A function that contains information that has one or more
variables.

Measuring and interpreting of biosignals is important in biomedical
engineering.

Electrical signals result from action potentials in our cells.

The correct measurement and interpretation of signals is vital.
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Signals and Signal Systems

A signal can be represented in both time and frequency domains.

FIGURE 2.1
Left: A time continuous analog signal. Right: A discrete sequence signal.
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Analog signal and Digital Signal

Analog Signal

Analog signal uninterrupted and continuous.

It consists of endless points.

Digital Signal

Digitized signals. So there are values of 1 and 0. (Binary)

It is not continuous. Because it’s numerical.

It is cheaper than the analog signal.
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Linear Shift Invariant Systems

There are many forms of deterministic or periodic signals; the two most
common are the unit impulse function and the unit step function.
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Linear Shift Invariant Systems

FIGURE 2.3
A signal system consisting of one input signal, which is transformed into
the output.

The transformation operator known as the transfer function (Φ)

x2(n) = Φ[x1(n)] (1)

A system is said to be a linear system if there is principle of superposition:

Φ[ax1(n) + bx1(n)] = aΦ[x1(n)] + Φb[x1(n)] (2)
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Linear Shift Invariant Systems

FIGURE 2.4
A signal system consisting of one input signal, which is transformed into
the output.

A shift invariant system is a digital system;

x1(n) to x2(n) and
x1(n-d) to x2(n-d)

d is a delay or shift in the digital sequence.
The analog version of this system is the linear time invariant system.
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Linear Shift Invariant Systems

The impulse response of a system be written as

h = Φ(δ0) (3)

Any output signal x2(n) can be written in terms of the input signal x1(n) as

x2(n) =
∞∑

k=−∞
x1(k)δ0(n − k) (4)

Then the output of a general linear shift invariant system can be
represented by

x2(n) =
∞∑

k=−∞
x1(k)h(n − k) (5)
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Sampling and Analog Reconstruction

The reproducibility of the signal depends on how often the signal is
sampled on the transmitter.

The sampling signal frequency (fsr) must be greater than twice the
maximum frequency (fc) of the information signal.

(fsr > or = 2fc)

The minimum sampling rate is known as the Nyquist rate, where the
Nyquist frequency is defined as

fNR= fsr/2
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Sampling and Analog Reconstruction

Analog reconstruction is the opposite of digitization with the aim to
recover the original time continuous signal given a sequence of
discrete values.

To do this, the digital signal is low-pass filtered with cutoff frequency
equal to the Nyquist frequency.

This removes the higher frequency components and smoothens the
gaps between digital samples.
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Causality and Stability

CAUSALITY
A system is said to be ’causal’ if the output at any time depends only on
inputs up to that time and not after.

x1[n] =x2[n], n < n0

x1[n] 6=x2[n], n > n0

y1[n0] =y2[n], n ∈ n0

STABILITY
This implies that the outputs of the system are bounded for all bounded
input sequences.

max(|x [n]|) <∞
max(|y [n]|) <∞
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Noise

Noise is often regarded as unwanted signals.

Noise signals are “stationary” if the probabilistic characteristics of the
signal do not change with time, for example, constant mean or
variance.

White noise refers to signals with a flat spectrum, which is constant
and independent of frequency.

Pseudorandom signals are generated using some complex and
unknown algorithm.
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Signal Transforms

In this section, we examine several different signal transforms.

The Fourier Transform

The Fourier transform allows the identification of non-periodic signals
in the frequency domain.
For a continuous time signal x(t), the Fourier transform is given by
the integral X;

X (jω) =

∫ ∞
−∞

x(t)e−jωtdt (6)

and x(t) can be recovered by the inverse Fourier transform;

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωtdω (7)
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Signal Transforms

The Fourier Transform

The Fourier transform for the digital sequence is then a summation of
N;

X (k) =
N∑

n=1

x(n)e−jωn (8)

The inverse discrete Fourier transform is just;

x(n) =
1

N

N∑
k=1

X (k)e jωn (9)
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Signal Transforms

Fast Fourier Transform
Fast fourier transformation is often used in signal processing because
it allows the frequencies of a signal to be measured. This
transformation is a special case of the Fourier transform.
-Fast fourier transformation makes Fourier Transform very fast within
the algorithms.
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Signal Transforms

The Wavelet Transform
- Wavelet transform decomposes a signal into a set of basis functions.
These basis functions are called wavelets.
- The wavelet analysis method is a time-frequency analysis method.
- You can use this representation to characterize transient events,
reduce noise, compress data, and perform many other operations.
- Discrete wavelet transform (DWT), which transforms a discrete
time signal to a discrete wavelet representation.

W (a, b) =
1√
a

∫ ∞
−∞

x(t).Ψ(
t − b

a
)dt (10)

Ψ(a,b)(t) =
1√
a

∫ ∞
−∞

Ψ(
t − b

a
) (11)
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Signal Transforms

The Wavelet Transform

W (a, b) =

∫ ∞
−∞

x(t) Ψ(a,b)(t)dt (12)

In these equations a > 0, b ∈ < a, scaling parameter; b conversion
parameter; x (t) sign; Ψ, wavelet function (main wavelet); W (a, b)
also sign indicates continuous wavelet transform.
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Signal Transforms

The Wavelet Transform
Common applications of wavelet transforms include:
- Speech and audio processing
- Image and video processing
- Biomedical imaging
- 1D and 2D applications in communications and geophysics.
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Signal Transforms

The z-Transform
z transformation is a more general form of discrete time Fourier
Transform.
The z transformation of discrete time f(n) signal is expressed as
follows;

F (z) =
∞∑

n=−∞
f (n)z−n (13)

z is a complex variable and expressed as; z=|z |e jn
The z-transform is useful for solving difference equations and also to derive
the transfer function of the system.

20 / 37



Signal Transforms

Discrete Cosine Transform (DCT)
-DCT is often used in signal processing for compression purposes.
-The DCT is a transform similar to the DFT, except that it uses only
the real part of the signal. It transforms a signal or image from the
spatial domain to the frequency domain.
The standard DFT can be written as follows for k = 1, 2,...,N:

X (k) =
N∑

n=1

x(n)e(−j2πnk)/N (14)

and the DCT can be obtained by taking the transform of the real part
giving;

Xc(k) = Re[
N∑

n=1

x(n)e(−j2πnk)/N ] (15)
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Signal Transforms

Discrete Cosine Transform

Xc(k) =
N∑

n=1

xncos(
2πnk

N
) (16)

A more common form of DCT is given by the following for all k = 1,
2,...,N:

Xc(k) =
1

N

N∑
n=1

xncos(
πk(2n + 1)

2N
) (17)

The inverse of the DCT can be obtained using the following:

Xc(k) =
1

2
x0

N∑
n=2

xncos(
πn(2k + 1)

2N
) (18)
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Signal Transforms

The Discrete Walsh Transform
- The Walsh-Hadamard transform is a non-sinusoidal, orthogonal
transformation technique that decomposes a signal into a set of basis
functions. These basis functions are Walsh functions, which are
rectangular or square waves with values of +1 or –1.
- Like the Fourier transform, the Walsh transform is composed of
even and odd Walsh functions. Any waveform f(t) can be written in
terms of sums of the Walsh function series as follows:

f (t) = a0WAL(0, t) +

N/2−1∑
i=1

[aiWAL(2i , t) + biWAL(2i + 1, t)] (19)
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Signal Transforms

The Discrete Walsh Transform
In general WAL(i, t)=+1 or -1 and any two Walsh functions are
orthogonal, that is,

N∑
t=1

WAL(p, t)WAL(q, t) =

{
N for p = q
0 for p 6= q

The transform–inverse pair is written formally as follows:

Xk =
1

N

N∑
i=1

xiWAL(k , i) (20)

and the inverse is;

xi =
N∑
i=1

XkWAL(k, i) (21)
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Signal Transforms

The Discrete Walsh Transform
The discrete Walsh transform can be calculated using matrix
multiplication;

XK = xiWki (22)

where xi = [x1, x2, ..., xN ] and Wki is the N x N Walsh transform
matrix.
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Signal Transforms

The Hadamard Transform
- The Hadamard transform (also known as the Walsh–Hadamard
transform,) is an example of a generalized class of Fourier transforms.
- The Hadamard transform is similar to the Walsh transform but has
rows of the transform matrix ordered differently.
- The Hadamard transform is used in a number of applications, such
as image processing, speech processing, filtering, and power spectrum
analysis. It is very useful for reducing bandwidth storage requirements
and spread-spectrum analysis.
A Hadamard matrix Hjj is a symmetric JxJ matrix with elements +1
and -1. The Hadamard matrix of second order is given by

H22 =

(
1 1
1 −1

)
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Signal Transforms

The Hadamard Transform
- A Hadamard matrix of order 2J can be written as

H2J2J =

(
HJJ HJJ

HJJ −HJJ

)
-Inverse Hadamard matrices are easily computed as

H−1JJ =
1

J
HJJ

- The Hadamard transform and its inverse are given by

F = HMM .f .HNN , f =
1

MN
HMM .F .HNN ,

-It can be seen that only matrix multiplication is necessary to compute a
Hadamard transformation.
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Signal Transforms

TABLE 3.1 Review of transforms and their demonstrations
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Signal Transforms

TABLE 3.2 Review of transforms and MATLAB Codes
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Spectral Analysis and Estimation

Information in signals can be obtained from their power spectrum, where
the most relevant measure is the autocorrelation function used to
characterize the signal in the time domain.

AUTOCORRELATION and POWER DENSITY SPECTRUM

A digital signal x(n) obtained by sampling some analog signal x(t).

The energy of an analog signal x(t) as

E =

∫ ∞
−∞

(|x(t)|)2dt <∞ (23)

If the signal has finite energy, then its Fourier transform exists

X (F ) =

∫ ∞
−∞

x(t)e−j2πFtdt (24)
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Autocorrelation and Power Density Spectrum

By Parseval’s theorem, we find that (|X (n)|)2
is referred to as the energy density spectrum of the signal, Sxx. Here;

Sxx = (|X (n)|)2 (25)

In time domain, the Fourier transform of the energy density spectrum Sxx
is called the autocorrelation function and written as

Rxx(τ) =

∫ ∞
−∞

x∗(t)x(t + τ)dt (26)

The power density spectrum is then the Fourier transform of this
autocorrelation function written as;

τxx(F ) =

∫ ∞
−∞

γxx(τ)e−j2πFtdt (27)
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Nonparametric Estimation Models

The classical nonparametric methods that have been used for estimation
of power density spectrum include the Bartlett, Welch, Blackman and
Tukey methods.

The Bartlett method reduces the variance observed in the
periodogram by averaging the periodograms.

The Welch computed a modified periodogram, which used just a
selected part of the segment.

In the Blackman and Tukey approach, problem is addressed by first
windowing the sample autocorrelation sequence and then obtaining
the power spectrum from the Fourier transform.
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Parametric Estimation Models

The model used is based on the output of a linear system having the form.
1. Autoregressive (AR) Model
2. Moving Average Model
3. Autoregressive Moving Average Model
***The AR model is the most popular of the three.
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Autoregressive (AR) Model

The AR model parameters can be estimated using several methods such as
the Yule–Walker, Burg and covariance methods.

The Yule– Walker method uses a biased form of the autocorrelation
estimate.

The Burg method estimates parameters by minimizing forward and
backward errors of the linear system.

The advantages of the Burg method are that it provides
high-frequency resolution, gives a stable AR model, and is
computationally efficient.
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Moving Average Model - Autoregressive Moving Average
Model

Moving Average Model
The noise whitening filter for the moving average process is regarded
as an all-pole filter.

Autoregressive Moving Average Model
This model can improve on the AR model by using fewer model
parameters and has been used in situations where the signal is
corrupted by additive white noise.
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Thanks for listening...
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