Microcontrollers & Applications

Lecture 3.1: Serial Communication & Digital Input-Output b

Serial Communication

/* Serial communication library is included by default, not necesary to
declare. If different than hardware pins will be used, SoftwareSerial.h
should be imported indeed */

Serial.begin(9600)

® Starts the serial communication with the speed of 9600 bps
Serial.end()

= Finalizes the serial communication

Serial.print(value)

= Sends the value via serial port

Serial.printin(value)

Sends the value and the next line character (i.e., value+’\n’) via serial
port

Serial.available()

= trueif there are some values received via serial port
= false if there is no received value via serial port
Serial.read()

= Reads the incoming byte value from the serial port
Serial.readString()

= Reads the received string from the serial port

from machine import UART

= |mport the required library

uart = UART(id=0,baudrate=9600,bits=8,parity=None,stop=1)

uart = UART(0, 9600)

m Starts the serial communication via GPIO0 pin with the speed of 9600 bps
uart.read(n)

= Reads n characters from the serial port

uart.read()

= Reads all available characters from the serial port

uart.readline()

m Reads a line of characters (until reaching the ‘\n’ character) from the serial
port

uart.readinto(buf)
= Reads and stores into the given buffer
uart.write(value)

= Sends the value via serial port

GND =0V

PULLDOWN PULLDOWN

Active HIGH (PULLDOWN):

= When you read HIGH (+5V) from the
digital input it is activated (button
pressed here); otherwise, it will be in
passive. The pin must be connected to
the GND via a pulldown resistor and
the other terminal must be directly
connected to the +5V.

Active LOW (PULLUP):

= When you read LOW (GND =0 V) from
the digital input it is activated (button
pressed here); otherwise, it will be in
passive. The pin must be connected to
the +5V via a pullup resistor and the
other terminal must be directly
connected to the GND.

If the input device requires extra
hardware components, you must use
them in series.

GND = 0%

Digital Outputs

Active HIGH Active LOW = Active HIGH:
GPIO +58V = When you send HIGH (+5V) to the
X digital output it activates (lightens
- here); otherwise, it will be in passive.
R1 The other terminal must be
330R D2 connected to the GND.
R LED = Active LOW:
D1 \J = When you send LOW (GND =0V) to
the digital output it activates (lightens
\.I LED R? here); otherwise, it will be in passive.
Ny 330R The other terminal must be
T connected to the +5V.
T GPI0 ® |f the output device requires current
GND limitation, you must connect a

resistor in series.

Arduino Example

MR serial Monitor

s D
. b fctive low LED is LOW
Active low LED is HIGH
) Active high LED is HIGH
Active high LED is LOW
I eob oo o gooeceosesss -: Pullup button is active
B T b el ot et (olorine dchelbtiibdirociodviondod N Active low LED is LOW
e Bl hsialys aBli et bl iR Active low LED is HIGH
—eobsssfessdeveflrocs]esscsncsrsnscls Active high LED is HIGH
b sreshessdesrlrsolissassssenoleso Active high LED is LOW
B R U U A R T Pulldown button is active
. .?".....?"-.....!...g....m Active low LED iz LOW
= l\..&_._.._..JU Active low LED is HIGH
SR B8 S Active high LED is HIGH
i b e b et
5 2 g 1 P

ﬁ -
-1
e "

Code of Arduino Example

#tdefine BUTTON_PULLUP 2
#define BUTTON_PULLDOWN 3
#define LED_ACTIVE_LOW 4
#define LED_ACTIVE_HIGH 5

void setup() {
pinMode(BUTTON_PULLUP, INPUT);
pinMode(BUTTON_PULLDOWN, INPUT);
pinMode(LED_ACTIVE_LOW, OUTPUT);
digitalWrite(LED_ACTIVE_LOW, HIGH);
pinMode(LED_ACTIVE_HIGH, OUTPUT);
digitalWrite(LED_ACTIVE_HIGH, LOW);
Serial.begin(9600);

void loop()

{
digitalWrite(LED_ACTIVE_LOW, LOW);
Serial.printin("Active low LED is LOW");
delay(1000); // Wait for 1000 millisecond(s)
digitalWrite(LED_ACTIVE_LOW, HIGH);
Serial.printin("Active low LED is HIGH");
delay(1000); // Wait for 1000 millisecond(s)
digitalWrite(LED_ACTIVE_HIGH, HIGH);
Serial.printin("Active high LED is HIGH");
delay(1000); // Wait for 1000 millisecond(s)
digitalWrite(LED_ACTIVE_HIGH, LOW);
Serial.printIn("Active high LED is LOW");
delay(1000); // Wait for 1000 millisecond(s)

if (digitalRead(BUTTON_PULLUP) == LOW) {
Serial.printin("Pullup button is active");
delay(100); // Wait for 100 millisecond(s)

}

if (digitalRead(BUTTON_PULLDOWN) == HIGH)
{

Serial.printIn("Pulldown button is active");

delay(100); // Wait for 100 millisecond(s)
}

MR serial Monitor

12C0 SDA
12C0 SCL

L VvBUS |
3 INEE
Ll GND |

:a.

[X]

36 [ENEICID]

33 AGND
ADC1__J 1261 SEL
ADCO__ | 12C1 SDA

e @ N e AW N =

24 GND |

i Pico ©2020

12C1 SDA § SPI1 SCK
12C1 SCL SPI1 TX

UARTO TX § 12C0 SDA 12C1 SCL

low LED is LOW
low LED is HIGH
high LED is HIGH
high LED is LOW
button is active
low LED is LOW
low LED is HIGH
high LED is HIGH
high LED is LOW

Pulldown button is active

Active low LED is LOW
Active low LED is HIGH
Active high LED is HIGH

UARTO RX § 12C0 SCL 12C1 SDA
23

12C1 SCL SPIT TX

SPI0 CSn 12C0 SCL_§ UARTO RX
SPI0 RX 12C0 SDA § UARTO TX

o
==
[
—
ar

=
j=1
w
o

o

UART / UART (default)

Code of Raspberry Pi Pico Example

import time
while True:

import board

LED_ACTIVE_LOW.value = False if BUTTON_PULLUP == False:
import digitalio

uart.write("Active low LED is LOW\n") uart.write("Pullup button is active\n")
import UART

time.sleep(1) time.sleep(0.1)

if BUTTON_PULLDOWN == True:

BUTTON_PULLUP = digitalio.DigitallnOut(board.GP2)

LED_ACTIVE_LOW.value = True uart.write("Pulldown button is active\n")
BUTTON_PULLUP.direction = digitalio.Direction.INPUT

uart.write("Active low LED is HIGH\n") time.sleep(0.1)

BUTTON_PULLDOWN = digitalio.DigitallnOut(board.GP3)
time.sleep(1)
BUTTON_PULLDOWN.direction = digitalio.Direction.INPUT

LED_ACTIVE_HIGH.value = True
LED_ACTIVE_LOW = digitalio.DigitalinOut(board.GP4)

uart.write("Active high LED is HIGH\n")
LED_ACTIVE_LOW.direction = digitalio.Direction.OUTPUT

time.sleep(1)
LED_ACTIVE_LOW.value = True

LED_ACTIVE_HIGH = digitalio.DigitallnOut(board.GP5)

LED_ACTIVE_HIGH.value = False
LED_ACTIVE_HIGH.direction = digitalio.Direction.OUTPUT

uart.write("Active high LED is LOW\n")
LED_ACTIVE_HIGH.value = False

time.sleep(1)
uart = UART(0, 9600)

Connecting High-Power Outputs using Relays (1)

+5V Ry cai W e
R1 PCH17 SRO-5VDC-SL-C
1KO Cptocoupler Relay
RPi +3.3V &—AAA, }; Ei Zk o
- DA = COM . . .
eV YT TN4001 % 21 ! = Diode (D,) is reversely connected to the coil of

g the relay via MOSFET (Q,).
|

Using a Raspberry Pi board (or any other
microcontroller) to control very-high-voltage
E”D“M' devices via digital input/output voltages.

Optocoupler Transistor Relay
Subeircuit Subcircuit Subcircuit

) 2N7000 l Practical optocoupler and relay connection.
GND,_

Practical simple relay module. Using an Arduino
Uno R3 board (or any other microcontroller) to

control high-voltage devices (upto a 220-V lamp,
or similar) via digital input/output voltages.

DA |, Mis

104 250VAC 10A 125VAC
104 3VDC 104 28vDe | LR

SRD-05VDC-SL-C |81

Common Contact o

Normally closed

A diode (1N4007) is reversely connected to the
coil of the relay via NPN transistor (BC547).

VCC: Relay input voltage

GND: Relay ground voltage reference

Signal: Digital control signal

Common Contact: Power to the external device

Normally Closed: Common contact is connected
when the signal is LOW ; otherwise, disconnected.

Normally Open: Common contact is connected
when the signal is HIGH; otherwise, disconnected.

-
O
(e
(Vg
=z
C
(g
i -
_I

listening ©

	Microcontrollers & Applications
	Serial Communication
	Digital Inputs
	Digital Outputs
	Arduino Example
	Code of Arduino Example
	Raspberry Pi Pico Example
	Code of Raspberry Pi Pico Example
	Connecting High-Power Outputs using Relays (1)
	Connecting High-Power Outputs using Relays (2)
	Thanks for listening 

